Menu Close

If-a-b-c-are-in-AP-p-q-r-are-in-HP-and-ap-bq-cr-are-in-GP-then-p-r-r-p-is-equal-to-




Question Number 81731 by zainal tanjung last updated on 15/Feb/20
If  a, b, c are in AP;  p, q, r are in HP   and  ap, bq, cr  are in GP, then (p/r)+(r/p)  is equal to
$$\mathrm{If}\:\:{a},\:{b},\:{c}\:\mathrm{are}\:\mathrm{in}\:\mathrm{AP};\:\:{p},\:{q},\:{r}\:\mathrm{are}\:\mathrm{in}\:\mathrm{HP}\: \\ $$$$\mathrm{and}\:\:{ap},\:{bq},\:{cr}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{GP},\:\mathrm{then}\:\frac{{p}}{{r}}+\frac{{r}}{{p}} \\ $$$$\mathrm{is}\:\mathrm{equal}\:\mathrm{to} \\ $$
Commented by jagoll last updated on 15/Feb/20
(i) a,b,c in AP ⇒ 2b = a+c  (ii) ap, bq, cr in GP ⇒ (bq)^2 =apcr  (iii)p, q, r in HP ⇒ (1/q) = (2/((1/p)+(1/r)))  ⇒(1/p)+(1/r) = 2q
$$\left({i}\right)\:{a},{b},{c}\:{in}\:{AP}\:\Rightarrow\:\mathrm{2}{b}\:=\:{a}+{c} \\ $$$$\left({ii}\right)\:{ap},\:{bq},\:{cr}\:{in}\:{GP}\:\Rightarrow\:\left({bq}\right)^{\mathrm{2}} ={apcr} \\ $$$$\left({iii}\right){p},\:{q},\:{r}\:{in}\:{HP}\:\Rightarrow\:\frac{\mathrm{1}}{{q}}\:=\:\frac{\mathrm{2}}{\frac{\mathrm{1}}{{p}}+\frac{\mathrm{1}}{{r}}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{{p}}+\frac{\mathrm{1}}{{r}}\:=\:\mathrm{2}{q} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *