Menu Close

If-a-b-c-are-in-GP-and-log-c-a-log-b-c-log-a-b-are-in-AP-then-the-common-difference-of-the-AP-is-




Question Number 43602 by peter frank last updated on 12/Sep/18
If  a, b, c  are in GP and log_c a, log_b c, log_a b  are in AP, then the common difference  of the AP is
$$\mathrm{If}\:\:{a},\:{b},\:{c}\:\:\mathrm{are}\:\mathrm{in}\:\mathrm{GP}\:\mathrm{and}\:\mathrm{log}_{{c}} {a},\:\mathrm{log}_{{b}} {c},\:\mathrm{log}_{{a}} {b} \\ $$$$\mathrm{are}\:\mathrm{in}\:\mathrm{AP},\:\mathrm{then}\:\mathrm{the}\:\mathrm{common}\:\mathrm{difference} \\ $$$$\mathrm{of}\:\mathrm{the}\:\mathrm{AP}\:\mathrm{is} \\ $$
Answered by $@ty@m last updated on 12/Sep/18
Let log _c a=x−y ⇒a=c^(x−y)  ...(1)  log _b c=x  ⇒b^x =c ...(2)  log _a b=x+y ⇒a^(x+y) =b ...(3)  From (1) &(2),  a=b^(x(x−y))   ...(4)  From (3) &(4),  a=a^((x+y)x(x−y))   ⇒(x+y)x(x−y)=1 ...(5)  ∵ a, b & c are in G.P.  ∴ b^2 =ac  ⇒a^(2(x+y)) =a.b^x from (2)&(3),  ⇒a^(2(x+y)) =a.a^(x+y)   ⇒a^(x+y) =a  ⇒x+y=1  ⇒x=1−y  Substituting this in (5)  x(x−y)=1  ⇒(1−y)(1−2y)=1  ⇒1−3y+2y^2 =1  ⇒y(2y−3)=0  ⇒y=0 (inadmissible)  or y=(3/2) Ans.
$${Let}\:\mathrm{log}\:_{{c}} {a}={x}−{y}\:\Rightarrow{a}={c}^{{x}−{y}} \:…\left(\mathrm{1}\right) \\ $$$$\mathrm{log}\:_{{b}} {c}={x}\:\:\Rightarrow{b}^{{x}} ={c}\:…\left(\mathrm{2}\right) \\ $$$$\mathrm{log}\:_{{a}} {b}={x}+{y}\:\Rightarrow{a}^{{x}+{y}} ={b}\:…\left(\mathrm{3}\right) \\ $$$${From}\:\left(\mathrm{1}\right)\:\&\left(\mathrm{2}\right), \\ $$$${a}={b}^{{x}\left({x}−{y}\right)} \:\:…\left(\mathrm{4}\right) \\ $$$${From}\:\left(\mathrm{3}\right)\:\&\left(\mathrm{4}\right), \\ $$$${a}={a}^{\left({x}+{y}\right){x}\left({x}−{y}\right)} \\ $$$$\Rightarrow\left({x}+{y}\right){x}\left({x}−{y}\right)=\mathrm{1}\:…\left(\mathrm{5}\right) \\ $$$$\because\:{a},\:{b}\:\&\:{c}\:{are}\:{in}\:{G}.{P}. \\ $$$$\therefore\:{b}^{\mathrm{2}} ={ac} \\ $$$$\Rightarrow{a}^{\mathrm{2}\left({x}+{y}\right)} ={a}.{b}^{{x}} {from}\:\left(\mathrm{2}\right)\&\left(\mathrm{3}\right), \\ $$$$\Rightarrow{a}^{\mathrm{2}\left({x}+{y}\right)} ={a}.{a}^{{x}+{y}} \\ $$$$\Rightarrow{a}^{{x}+{y}} ={a} \\ $$$$\Rightarrow{x}+{y}=\mathrm{1} \\ $$$$\Rightarrow{x}=\mathrm{1}−{y} \\ $$$${Substituting}\:{this}\:{in}\:\left(\mathrm{5}\right) \\ $$$${x}\left({x}−{y}\right)=\mathrm{1} \\ $$$$\Rightarrow\left(\mathrm{1}−{y}\right)\left(\mathrm{1}−\mathrm{2}{y}\right)=\mathrm{1} \\ $$$$\Rightarrow\mathrm{1}−\mathrm{3}{y}+\mathrm{2}{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\Rightarrow{y}\left(\mathrm{2}{y}−\mathrm{3}\right)=\mathrm{0} \\ $$$$\Rightarrow{y}=\mathrm{0}\:\left({inadmissible}\right) \\ $$$${or}\:{y}=\frac{\mathrm{3}}{\mathrm{2}}\:{Ans}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *