Menu Close

If-A-B-C-pi-then-sin-2-A-sin-2-B-sin-2-C-2-cos-A-cos-B-cos-C-




Question Number 95515 by bagjamath last updated on 25/May/20
If A+B+C = π, then  sin^2 A+sin^2 B+sin^2 C−2 cos A cos B cos C=
IfA+B+C=π,thensin2A+sin2B+sin2C2cosAcosBcosC=
Answered by som(math1967) last updated on 25/May/20
sin^2 A+sin^2 B+sin^2 C−2cosAcos Bcos C  =(1/2)(2sin^2 A+2sin^2 B+2sin^2 C)                         −2cosAcos Bcos C  =(1/2)(1−cos2A)+(1/2)(1−cos2B)             1−cos^2 C −2cosAcosBcos C  =2−(1/2)2cos (A+B)cos (A−B)         −cos^2 C−2cosAcosBcosC  =2 +cosCcos(A−B)−cos^2 C    −2cosAcosBcosC ★  =2+cosC{cos(A−B)−cosC}    −2cosAcosBcosC  =2+cosC{cos (A−B)+cos (A+B)}  −2cosAcosBcosC  =2+2cosAcosBcosC−2cosAcosBcosC  =2 ans  ★A+B+C=π  ∴cos(A+B)=−cosC
sin2A+sin2B+sin2C2cosAcosBcosC=12(2sin2A+2sin2B+2sin2C)2cosAcosBcosC=12(1cos2A)+12(1cos2B)1cos2C2cosAcosBcosC=2122cos(A+B)cos(AB)cos2C2cosAcosBcosC=2+cosCcos(AB)cos2C2cosAcosBcosC=2+cosC{cos(AB)cosC}2cosAcosBcosC=2+cosC{cos(AB)+cos(A+B)}2cosAcosBcosC=2+2cosAcosBcosC2cosAcosBcosC=2ansA+B+C=πcos(A+B)=cosC
Commented by peter frank last updated on 25/May/20
thank you
thankyou

Leave a Reply

Your email address will not be published. Required fields are marked *