Menu Close

If-a-gt-0-b-gt-0-c-gt-0-are-respectively-the-p-th-q-th-r-th-terms-of-a-GP-then-the-value-of-the-determinant-determinant-log-a-p-1-log-b-q-1-log-c-r-1-is-




Question Number 7911 by ashis786 last updated on 24/Sep/16
If a>0, b>0, c>0 are respectively the  p^(th) , q^(th) , r^(th)  terms of a GP, then the value  of the determinant  determinant (((log a),p,1),((log b),q,1),((log c),r,1)) is
Ifa>0,b>0,c>0arerespectivelythepth,qth,rthtermsofaGP,thenthevalueofthedeterminant|logap1logbq1logcr1|is
Answered by prakash jain last updated on 24/Sep/16
Let first term of GP be xy with common ratio y  a=xy^p ⇒log a=log x+plog y  b=xy^q ⇒log b=log x+qlog y  c=xy^r ⇒log c=log x+rlog y   determinant (((log a),p,1),((log b),q,1),((log c),r,1))= determinant (((log x+plog y),p,1),((logx+qlog y),q,1),((log x+rlog y),r,1))  = determinant (((log x),p,1),((logx),q,1),((log x),r,1))+ determinant (((plog y),p,1),((qlog y),q,1),((rlog y),r,1))  =log x determinant ((1,p,1),(1,q,1),(1,r,1))+log y determinant ((p,p,1),(q,q,1),(r,r,1))  C1 =C3 (in 1^(st)  determinant)   and C1=C2 in 2^(nd)   =(log x)×0+log y×0=0
LetfirsttermofGPbexywithcommonratioya=xyploga=logx+plogyb=xyqlogb=logx+qlogyc=xyrlogc=logx+rlogy|logap1logbq1logcr1|=|logx+plogyp1logx+qlogyq1logx+rlogyr1|=|logxp1logxq1logxr1|+|plogyp1qlogyq1rlogyr1|=logx|1p11q11r1|+logy|pp1qq1rr1|C1=C3(in1stdeterminant)andC1=C2in2nd=(logx)×0+logy×0=0
Commented by Rasheed Soomro last updated on 24/Sep/16
Also like your way of correction.
Alsolikeyourwayofcorrection.
Commented by ashis786 last updated on 24/Sep/16
thank you so much...
thankyousomuch
Commented by sandy_suhendra last updated on 24/Sep/16
if the first term of GP =x and the ratio=y  so   a=the p^(th)  term of GP = xy^( p−1)    isn′t it?
ifthefirsttermofGP=xandtheratio=ysoa=thepthtermofGP=xyp1isntit?
Commented by prakash jain last updated on 24/Sep/16
Thanks. Updated the answer to start with  first term xy.
Thanks.Updatedtheanswertostartwithfirsttermxy.

Leave a Reply

Your email address will not be published. Required fields are marked *