Menu Close

If-a-i-j-k-b-i-j-k-and-c-is-a-unit-vector-to-the-vector-a-and-coplanar-with-a-and-b-then-a-unit-vector-d-to-both-a-and-c-is-




Question Number 54419 by gunawan last updated on 03/Feb/19
If a=i+j−k, b=i−j+k and c is a unit  vector ⊥ to the vector a and coplanar  with a and b, then a unit vector d ⊥ to  both a and c is
Ifa=i+jk,b=ij+kandcisaunitvectortothevectoraandcoplanarwithaandb,thenaunitvectordtobothaandcis
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Feb/19
c=xa+yb  c=x(i+j−k)+y(i−j+k)  c=i(x+y)+j(x−y)+k(−x+y)  c.a=0  [i(x+y)+j(x−y)+k(−x+y)].[i+j−k]=0  (x+y)+(x−y)+(−x+y)(−1)=0  x+y+x−y+x−y=0  3x−y=0.....(1)eqn  c=i(x+y)+j(x−y)+k(−x+y)  c=i(x+3x)+j(x−3x)+k(−x+3x)  c=i(4x)+j(−2x)+k(2x)  given (√(16x^2 +4x^2 +4x^2 )) =1  (√(24x^2 )) =1   x=±(1/( (√(24))))  considering +ve value only...x=(1/( (√(24))))   y=(3/( (√(24))))  c=i(x+y)+j(x−y)+k(−x+y)  c=i((4/( (√(24)))))+j(((−2)/( (√(24)))))+k((2/( (√(24)))))  considering −ve sign...  c=i(((−4)/( (√(24)))))+j((2/( (√(24)))))+k(((−2)/( (√(24)))))    d=((a×c)/(∣a×c∣))  now a×c    [i             j              k   ]     [1           1             −1 ]     [(4/( (√(24))))     ((−2)/( (√(24))))         (2/( (√(24))))]  now you solve the remaining...
c=xa+ybc=x(i+jk)+y(ij+k)c=i(x+y)+j(xy)+k(x+y)c.a=0[i(x+y)+j(xy)+k(x+y)].[i+jk]=0(x+y)+(xy)+(x+y)(1)=0x+y+xy+xy=03xy=0..(1)eqnc=i(x+y)+j(xy)+k(x+y)c=i(x+3x)+j(x3x)+k(x+3x)c=i(4x)+j(2x)+k(2x)given16x2+4x2+4x2=124x2=1x=±124considering+vevalueonlyx=124y=324c=i(x+y)+j(xy)+k(x+y)c=i(424)+j(224)+k(224)consideringvesignc=i(424)+j(224)+k(224)d=a×ca×cnowa×c[ijk][111][424224224]nowyousolvetheremaining

Leave a Reply

Your email address will not be published. Required fields are marked *