Menu Close

If-A-is-an-involutory-matrix-then-I-A-I-A-0-




Question Number 55844 by gunawan last updated on 05/Mar/19
If A is an involutory matrix, then   (I+A)(I−A)=0.
$$\mathrm{If}\:{A}\:\mathrm{is}\:\mathrm{an}\:\mathrm{involutory}\:\mathrm{matrix},\:\mathrm{then}\: \\ $$$$\left({I}+{A}\right)\left({I}−{A}\right)=\mathrm{0}. \\ $$
Answered by 121194 last updated on 05/Mar/19
a involutory matrix is a matrix that is it own inverse  A^2 =I  (I+A)(I−A)=I^2 −IA+AI−A^2   =I^2 −I  =0
$$\mathrm{a}\:\mathrm{involutory}\:\mathrm{matrix}\:\mathrm{is}\:\mathrm{a}\:\mathrm{matrix}\:\mathrm{that}\:\mathrm{is}\:\mathrm{it}\:\mathrm{own}\:\mathrm{inverse} \\ $$$${A}^{\mathrm{2}} ={I} \\ $$$$\left({I}+{A}\right)\left({I}−{A}\right)={I}^{\mathrm{2}} −{IA}+{AI}−{A}^{\mathrm{2}} \\ $$$$={I}^{\mathrm{2}} −{I} \\ $$$$=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *