Menu Close

If-A-lies-in-the-third-quadrant-and-3-tan-A-4-0-then-5-sin-2A-3-sin-A-4cos-A-




Question Number 20435 by pp75718276@gmail.com last updated on 26/Aug/17
If  A lies in the third quadrant and  3 tan A − 4 = 0, then   5 sin 2A + 3 sin A + 4cos A =
$$\mathrm{If}\:\:{A}\:\mathrm{lies}\:\mathrm{in}\:\mathrm{the}\:\mathrm{third}\:\mathrm{quadrant}\:\mathrm{and} \\ $$$$\mathrm{3}\:\mathrm{tan}\:{A}\:−\:\mathrm{4}\:=\:\mathrm{0},\:\mathrm{then}\: \\ $$$$\mathrm{5}\:\mathrm{sin}\:\mathrm{2}{A}\:+\:\mathrm{3}\:\mathrm{sin}\:{A}\:+\:\mathrm{4cos}\:{A}\:=\: \\ $$
Answered by Tinkutara last updated on 27/Aug/17
tan A = (4/3) ⇒ sin A = ((−4)/5), cos A = ((−3)/5)  ∵ π < A < ((3π)/2), both sine and cosine are  negative.  sin 2A = ((2 tan A)/(1 + tan^2  A)) = ((8/3)/(1 + ((16)/9))) = ((24)/(25))  ∴ 5×((24)/(25)) − 3×(4/5) − 4×(3/5) = 0
$$\mathrm{tan}\:{A}\:=\:\frac{\mathrm{4}}{\mathrm{3}}\:\Rightarrow\:\mathrm{sin}\:{A}\:=\:\frac{−\mathrm{4}}{\mathrm{5}},\:\mathrm{cos}\:{A}\:=\:\frac{−\mathrm{3}}{\mathrm{5}} \\ $$$$\because\:\pi\:<\:{A}\:<\:\frac{\mathrm{3}\pi}{\mathrm{2}},\:\mathrm{both}\:\mathrm{sine}\:\mathrm{and}\:\mathrm{cosine}\:\mathrm{are} \\ $$$$\mathrm{negative}. \\ $$$$\mathrm{sin}\:\mathrm{2}{A}\:=\:\frac{\mathrm{2}\:\mathrm{tan}\:{A}}{\mathrm{1}\:+\:\mathrm{tan}^{\mathrm{2}} \:{A}}\:=\:\frac{\frac{\mathrm{8}}{\mathrm{3}}}{\mathrm{1}\:+\:\frac{\mathrm{16}}{\mathrm{9}}}\:=\:\frac{\mathrm{24}}{\mathrm{25}} \\ $$$$\therefore\:\mathrm{5}×\frac{\mathrm{24}}{\mathrm{25}}\:−\:\mathrm{3}×\frac{\mathrm{4}}{\mathrm{5}}\:−\:\mathrm{4}×\frac{\mathrm{3}}{\mathrm{5}}\:=\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *