Menu Close

If-a-lt-1-and-b-lt-1-then-the-sum-of-the-series-1-1-a-b-1-a-a-2-b-2-1-a-a-2-a-3-b-3-is-




Question Number 68151 by mhmd last updated on 06/Sep/19
If ∣a∣< 1 and ∣b∣< 1, then the sum of the series  1+(1+a)b+(1+a+a^2 )b^2 +(1+a+a^2 +a^3 )b^3 +...  is
Ifa∣<1andb∣<1,thenthesumoftheseries1+(1+a)b+(1+a+a2)b2+(1+a+a2+a3)b3+is
Commented by ~ À ® @ 237 ~ last updated on 06/Sep/19
Let it be  S . We can ascertain that  S=Σ_(n=0) ^∞ (1+a+a^2 +.....+a^n )b^n    knowing that  1+a+...+a^n = ((1−a^(n+1) )/(1−a))   S=Σ_(n=0) ^∞  (((1−a^(n+1) )/(1−a)))b^n  = (1/(1−a)) (Σ_(n=0) ^∞  b^n  − aΣ_(n=0) ^∞ (ab)^n )  Using  (1/(1−t))= Σ_(n=0) ^∞  t^n    S=(1/(1−a))((1/(1−b))−(a/(1−ab))) = (1/((1−b)(1−ab)))
LetitbeS.WecanascertainthatS=n=0(1+a+a2+..+an)bnknowingthat1+a++an=1an+11aS=n=0(1an+11a)bn=11a(n=0bnan=0(ab)n)Using11t=n=0tnS=11a(11ba1ab)=1(1b)(1ab)

Leave a Reply

Your email address will not be published. Required fields are marked *