Menu Close

If-a-lt-1-and-b-lt-1-then-the-sum-of-the-series-a-a-b-a-2-a-2-b-2-a-3-a-3-b-3-upto-is-




Question Number 43766 by peter frank last updated on 15/Sep/18
If ∣a∣<1 and ∣b∣<1, then the sum of the  series a(a+b)+a^2 (a^2 +b^2 )+a^3 (a^3 +b^3 )+...  upto ∞ is
Ifa∣<1andb∣<1,thenthesumoftheseriesa(a+b)+a2(a2+b2)+a3(a3+b3)+uptois
Answered by MrW3 last updated on 15/Sep/18
a(a+b)+a^2 (a^2 +b^2 )+a^3 (a^3 +b^3 )+...  =(a^2 +a^4 +a^6 +...)+[(ab)^2 +(ab)^4 +(ab)^6 +...]  →(a^2 /(1−a^2 ))+(((ab)^2 )/(1−(ab)^2 ))  =((a^2 (1−a^4 b^2 ))/((1−a^2 )(1−a^2 b^2 )))
a(a+b)+a2(a2+b2)+a3(a3+b3)+=(a2+a4+a6+)+[(ab)2+(ab)4+(ab)6+]a21a2+(ab)21(ab)2=a2(1a4b2)(1a2)(1a2b2)

Leave a Reply

Your email address will not be published. Required fields are marked *