Menu Close

If-are-the-roots-of-ax-2-bx-c-0-then-find-the-quadratic-equation-whose-roots-are-




Question Number 26888 by Roshan last updated on 31/Dec/17
If α, β are the roots of  ax^2 +bx+c=0  then find the quadratic equation   whose roots are α+β,  αβ.
Ifα,βaretherootsofax2+bx+c=0thenfindthequadraticequationwhoserootsareα+β,αβ.
Answered by Rasheed.Sindhi last updated on 31/Dec/17
ax^2 +bx+c=0  α+β=−(b/a) , αβ=(c/a)  In required equation:  Sum of the roots=(α+β)+αβ           =−(b/a)+(c/a)=((c−b)/a)  product of the roots=(α+β)(αβ)       =(−(b/a))((c/a))=−((bc)/a^2 )  x^2 −(Sum of roots)+(Product of roots)=0  x^2 −(((c−b)/a))x+(−((bc)/a^2 ))=0  a^2 x^2 +a(b−c)x−bc=0
ax2+bx+c=0α+β=ba,αβ=caInrequiredequation:Sumoftheroots=(α+β)+αβ=ba+ca=cbaproductoftheroots=(α+β)(αβ)=(ba)(ca)=bca2x2(Sumofroots)+(Productofroots)=0x2(cba)x+(bca2)=0a2x2+a(bc)xbc=0

Leave a Reply

Your email address will not be published. Required fields are marked *