Question Number 41820 by v tfvhjdxf last updated on 13/Aug/18
$$\mathrm{If}\:\alpha,\:\beta\:\mathrm{are}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{equation} \\ $$$${ax}^{\mathrm{2}} +{bx}+{c}=\mathrm{0},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{determinant} \\ $$$$\begin{vmatrix}{\mathrm{1}}&{\mathrm{cos}\:\left(\beta−\alpha\right)}&{\mathrm{cos}\:\alpha}\\{\mathrm{cos}\:\left(\alpha−\beta\right)}&{\mathrm{1}}&{\mathrm{cos}\:\beta}\\{\mathrm{cos}\:\alpha}&{\mathrm{cos}\:\beta}&{\mathrm{1}}\end{vmatrix}\:\mathrm{is} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Aug/18
$$\mathrm{1}\left(\mathrm{1}−{cos}^{\mathrm{2}} \beta\right)−{cos}\left(\beta−\alpha\right)\left\{{cos}\left(\alpha−\beta\right)−{cos}\alpha{cos}\beta\right\}+{cos}\alpha\left\{{cos}\left(\alpha−\beta\right){cos}\beta−{cos}\alpha\right\} \\ $$$${sin}^{\mathrm{2}} \beta−{cos}\left(\beta−\alpha\right)\left({sin}\alpha{sin}\beta\right)+{cos}\alpha{cos}\beta{cos}\left(\alpha−\beta\right)−{cos}^{\mathrm{2}} \alpha \\ $$$${sin}^{\mathrm{2}} \beta−{cos}^{\mathrm{2}} \alpha+{cos}\left(\alpha−\beta\right)\left\{{cos}\alpha{cos}\beta−{sin}\alpha{sin}\beta\right) \\ $$$${sin}^{\mathrm{2}} \beta−{cos}^{\mathrm{2}} \alpha+{cos}\left(\alpha−\beta\right){cos}\left(\alpha+\beta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{sin}^{\mathrm{2}} \beta−\mathrm{2}{cos}^{\mathrm{2}} \alpha+{cos}\mathrm{2}\alpha+{cos}\mathrm{2}\beta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{sin}^{\mathrm{2}} \beta−\mathrm{2}{cos}^{\mathrm{2}} \alpha+\mathrm{2}{cos}^{\mathrm{2}} \alpha−\mathrm{1}+\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \beta\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}\left(\right.}×\mathrm{0}=\mathrm{0} \\ $$$${pls}\:{check} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$