Menu Close

If-are-the-smallest-positive-angles-in-ascending-order-of-magnitude-which-have-their-sines-equal-to-the-positive-quantity-k-then-the-value-of-4-sin-2-3-sin-2-2-sin-2-sin-




Question Number 115685 by ZiYangLee last updated on 27/Sep/20
If  α, β, γ, δ  are the smallest positive   angles in ascending order of  magnitude which have their sines   equal to the positive quantity k, then  the value of   4 sin (α/2)+3 sin (β/2)+2 sin (γ/2)+sin (δ/2) is  equal to
Ifα,β,γ,δarethesmallestpositiveanglesinascendingorderofmagnitudewhichhavetheirsinesequaltothepositivequantityk,thenthevalueof4sinα2+3sinβ2+2sinγ2+sinδ2isequalto
Answered by mr W last updated on 27/Sep/20
sin α=sin β=sin γ=sin δ=k>0  ⇒α=sin^(−1) k with 0<α<(π/2)  ⇒β=π−α  ⇒γ=2π+α  ⇒δ=3π−α  4 sin (α/2)+3 sin (β/2)+2 sin (γ/2)+sin (δ/2)  =4 sin (α/2)+3 sin ((π/2)−(α/2))+2 sin (π+(α/2))+sin (((3π)/2)−(α/2))  =4 sin (α/2)+3 cos ((α/2))−2 sin ((α/2))−cos ((α/2))  =2(sin (α/2)+cos (α/2))  =2(√((sin (α/2)+cos (α/2))^2 ))  =2(√(1+sin α))  =2(√(1+k))
sinα=sinβ=sinγ=sinδ=k>0α=sin1kwith0<α<π2β=παγ=2π+αδ=3πα4sinα2+3sinβ2+2sinγ2+sinδ2=4sinα2+3sin(π2α2)+2sin(π+α2)+sin(3π2α2)=4sinα2+3cos(α2)2sin(α2)cos(α2)=2(sinα2+cosα2)=2(sinα2+cosα2)2=21+sinα=21+k
Commented by ZiYangLee last updated on 29/Sep/20
thank you sir...
thankyousir

Leave a Reply

Your email address will not be published. Required fields are marked *