Menu Close

If-C-r-be-the-coefficient-of-x-r-in-1-x-n-then-the-value-of-r-0-n-r-1-2-C-r-is-




Question Number 63831 by gunawan last updated on 10/Jul/19
If C_r  be the coefficient of x^r  in (1+x)^n ,  then the value of Σ_(r=0) ^n (r+1)^2  C_r  is
IfCrbethecoefficientofxrin(1+x)n,thenthevalueofnr=0(r+1)2Cris
Answered by mr W last updated on 10/Jul/19
Σ_(r=0) ^n C_r x^r =(1+x)^n   Σ_(r=0) ^n C_r x^(r+1) =(1+x)^n x  Σ_(r=0) ^n (r+1)C_r x^r =(1+x)^n +n(1+x)^(n−1) x  Σ_(r=0) ^n (r+1)C_r x^(r+1) =(1+x)^n x+n(1+x)^(n−1) x^2   Σ_(r=0) ^n (r+1)^2 C_r x^r =(1+x)^n +n(1+x)^(n−1) x+2n(1+x)^(n−1) x+n(n−1)(1+x)^(n−2) x^2   let x=1  Σ_(r=0) ^n (r+1)^2 C_r =2^n +n2^(n−1) +2n2^(n−1) +n(n−1)2^(n−2)   =(n+1)2^n +n(n+1)2^(n−2)   =(n+1)(n+4)2^(n−2)
nr=0Crxr=(1+x)nnr=0Crxr+1=(1+x)nxnr=0(r+1)Crxr=(1+x)n+n(1+x)n1xnr=0(r+1)Crxr+1=(1+x)nx+n(1+x)n1x2nr=0(r+1)2Crxr=(1+x)n+n(1+x)n1x+2n(1+x)n1x+n(n1)(1+x)n2x2letx=1nr=0(r+1)2Cr=2n+n2n1+2n2n1+n(n1)2n2=(n+1)2n+n(n+1)2n2=(n+1)(n+4)2n2
Commented by gunawan last updated on 10/Jul/19
wow  thank you Sir
wowthankyouSir

Leave a Reply

Your email address will not be published. Required fields are marked *