Menu Close

If-e-cos-x-e-cos-x-4-then-the-value-of-cos-x-is-




Question Number 86507 by ram roop sharma last updated on 29/Mar/20
If e^(cos x) −e^(−cos x) = 4, then the value  of cos x is
$$\mathrm{If}\:{e}^{\mathrm{cos}\:{x}} −{e}^{−\mathrm{cos}\:{x}} =\:\mathrm{4},\:\mathrm{then}\:\mathrm{the}\:\mathrm{value} \\ $$$$\mathrm{of}\:\mathrm{cos}\:{x}\:\mathrm{is} \\ $$
Commented by jagoll last updated on 29/Mar/20
(e^(cos x) )^2 −1 = 4e^(cos x)   (e^(cos x) −2)^2 =5  e^(cos x)  = 2+(√5)  cos x = ln (2+(√5)) > 1  cos x = ln (2−(√5)) <−1  cos x= ∅ , in x ∈ R
$$\left(\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} \right)^{\mathrm{2}} −\mathrm{1}\:=\:\mathrm{4e}^{\mathrm{cos}\:\mathrm{x}} \\ $$$$\left(\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} −\mathrm{2}\right)^{\mathrm{2}} =\mathrm{5} \\ $$$$\mathrm{e}^{\mathrm{cos}\:\mathrm{x}} \:=\:\mathrm{2}+\sqrt{\mathrm{5}} \\ $$$$\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{ln}\:\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)\:>\:\mathrm{1} \\ $$$$\mathrm{cos}\:\mathrm{x}\:=\:\mathrm{ln}\:\left(\mathrm{2}−\sqrt{\mathrm{5}}\right)\:<−\mathrm{1} \\ $$$$\mathrm{cos}\:\mathrm{x}=\:\varnothing\:,\:\mathrm{in}\:\mathrm{x}\:\in\:\mathbb{R} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *