Menu Close

If-f-a-b-x-f-x-then-a-b-x-f-x-dx-




Question Number 54031 by qw last updated on 28/Jan/19
If  f(a+b−x)= f(x), then ∫_a ^b  x f(x) dx =
$$\mathrm{If}\:\:{f}\left({a}+{b}−{x}\right)=\:{f}\left({x}\right),\:\mathrm{then}\:\underset{{a}} {\overset{{b}} {\int}}\:{x}\:{f}\left({x}\right)\:{dx}\:= \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
I=∫_a ^b xf(x)dx  I=∫_a ^b (a+b−x)f(a+b−x)dx  I=∫_a ^b (a+b−x)f(x)dx[f(a+b−x)=f(x)]  2I=∫_a ^b xf(x)dx+∫_a ^b (a+b−x)f(x)dx  2I=∫_a ^b (a+b−x+x)f(x)dx  I=((a+b)/2)∫_a ^b f(x)dx  others pls check...
$${I}=\int_{{a}} ^{{b}} {xf}\left({x}\right){dx} \\ $$$${I}=\int_{{a}} ^{{b}} \left({a}+{b}−{x}\right){f}\left({a}+{b}−{x}\right){dx} \\ $$$${I}=\int_{{a}} ^{{b}} \left({a}+{b}−{x}\right){f}\left({x}\right){dx}\left[{f}\left({a}+{b}−{x}\right)={f}\left({x}\right)\right] \\ $$$$\mathrm{2}{I}=\int_{{a}} ^{{b}} {xf}\left({x}\right){dx}+\int_{{a}} ^{{b}} \left({a}+{b}−{x}\right){f}\left({x}\right){dx} \\ $$$$\mathrm{2}{I}=\int_{{a}} ^{{b}} \left({a}+{b}−{x}+{x}\right){f}\left({x}\right){dx} \\ $$$${I}=\frac{{a}+{b}}{\mathrm{2}}\int_{{a}} ^{{b}} {f}\left({x}\right){dx} \\ $$$${others}\:{pls}\:{check}… \\ $$
Commented by maxmathsup by imad last updated on 28/Jan/19
correct sir Tanmay.
$${correct}\:{sir}\:{Tanmay}. \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 28/Jan/19
thank you sir...
$${thank}\:{you}\:{sir}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *