Question Number 22871 by keshavnimgade85@gmail.com last updated on 23/Oct/17
$$\mathrm{If}\:\:{f}\left({n}\right)=\frac{\mathrm{1}}{{n}}\left[\left({n}+\mathrm{1}\right)\left({n}+\mathrm{2}\right)\left({n}+\mathrm{3}\right)…\left({n}+{n}\right)\right]^{\mathrm{1}/{n}} , \\ $$$$\mathrm{then}\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{f}\left({n}\right)\:= \\ $$
Answered by ajfour last updated on 23/Oct/17
$${f}\left({n}\right)=\left[\left(\mathrm{1}+\frac{\mathrm{1}}{{n}}\right)\left(\mathrm{1}+\frac{\mathrm{2}}{{n}}\right)…\left(\mathrm{1}+\frac{{n}}{{n}}\right)\right]^{\mathrm{1}/{n}} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{ln}\:\left[{f}\left({n}\right)\right]\right)=\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \mathrm{ln}\:\left(\mathrm{1}+{x}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:={x}\mathrm{ln}\:\left(\mathrm{1}+{x}\right)\mid_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\:\:\mathrm{1}} \frac{{x}}{\mathrm{1}+{x}}\:{dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\mathrm{ln}\:\mathrm{2}−\left[{x}−\mathrm{ln}\:\left(\mathrm{1}+{x}\right)\right]\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{ln}\:\mathrm{2}−\mathrm{1}+\mathrm{ln}\:\mathrm{2}\:=\mathrm{2ln}\:\mathrm{2}−\mathrm{1} \\ $$$$\Rightarrow\:\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}{f}\left({n}\right)\:={e}^{\mathrm{ln}\:\left(\mathrm{4}/{e}\right)} \:=\frac{\mathrm{4}}{\boldsymbol{{e}}}\:. \\ $$