Menu Close

If-f-x-1-x-log-t-1-t-dt-then-f-x-f-1-x-1-2-log-x-2-




Question Number 52948 by gunawan last updated on 15/Jan/19
If   f(x) =∫_( 1) ^x  ((log t)/(1+t)) dt, then   f(x)+f ((1/x) )=(1/2)(log x)^2
Iff(x)=x1logt1+tdt,thenf(x)+f(1x)=12(logx)2
Commented by maxmathsup by imad last updated on 15/Jan/19
let ϕ(x)=f(x)+f((1/x))   ⇒ϕ^′ (x)=f^′ (x)−(1/x^2 )f^′ ((1/x))  =((logx)/(1+x)) −(1/x^2 ) ((log((1/x)))/(1+(1/x))) =((logx)/(1+x)) +((logx)/(x^2  +x)) =((xlogx +logx)/(x^2  +x)) =(((x+1)logx)/(x(x+1))) =((logx)/x)  from another side we have (d/dx)((1/2)(logx)^2 )=(1/2) ((2logx)/x) =((logx)/x) ⇒  ϕ(x)=(1/2)(logx)^2  +c    but ϕ(1)=0=c  ⇒ϕ(x)=(1/2)(logx)^2  ⇒  f(x)+f((1/x))=(1/2)(logx)^2  .
letφ(x)=f(x)+f(1x)φ(x)=f(x)1x2f(1x)=logx1+x1x2log(1x)1+1x=logx1+x+logxx2+x=xlogx+logxx2+x=(x+1)logxx(x+1)=logxxfromanothersidewehaveddx(12(logx)2)=122logxx=logxxφ(x)=12(logx)2+cbutφ(1)=0=cφ(x)=12(logx)2f(x)+f(1x)=12(logx)2.
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
f(x)=∫_1 ^x ((lnt)/(1+t))dt  f((1/x))=∫_1 ^(1/x) ((lnt)/(1+t))dt  k=(1/t)  t=(1/k)   dt=−(1/k^2 )dk  ∫_1 ^x ((ln((1/k)))/(1+(1/k)))×((−dk)/k^2 )  ∫_1 ^x ((−lnk)/(1+k))×(k/(−k^2 ))dk  f((1/x))=∫_1 ^x ((lnk)/(1+k))×(dk/k)  f(x)+f((1/x))=∫_1 ^x ((lnt)/(1+t))+((lnt)/(1+t))×(dt/t)  =∫_1 ^x ((lnt)/(1+t))×(1+(1/t))dt  =∫_1 ^x ((lnt)/t)  =∣(((lnt)^2 )/2)∣_1 ^x   =(((lnx)^2 )/2)  answer  pls see below...  I=∫((lnt)/t)dt  =lnt×lnt−∫(1/t)×lntdt  2I=(lnt)^2     so I=(((lnt)^2 )/2)
f(x)=1xlnt1+tdtf(1x)=11xlnt1+tdtk=1tt=1kdt=1k2dk1xln(1k)1+1k×dkk21xlnk1+k×kk2dkf(1x)=1xlnk1+k×dkkf(x)+f(1x)=1xlnt1+t+lnt1+t×dtt=1xlnt1+t×(1+1t)dt=1xlntt=∣(lnt)221x=(lnx)22answerplsseebelowI=lnttdt=lnt×lnt1t×lntdt2I=(lnt)2soI=(lnt)22
Commented by gunawan last updated on 16/Jan/19
thank you very much Sir
thankyouverymuchSir
Commented by tanmay.chaudhury50@gmail.com last updated on 16/Jan/19
most welcome...
mostwelcome
Answered by Tinkutara last updated on 15/Jan/19
Commented by Tinkutara last updated on 15/Jan/19

Leave a Reply

Your email address will not be published. Required fields are marked *