Menu Close

If-f-x-determinant-sin-x-sin2x-sin-3x-sin-2x-sin-3x-3-4-sin-x-3-4-sin-x-1-sin-x-sin-x-1-then-the-value-of-0-pi-2-f-x-dx-is-




Question Number 19148 by khamizan833@yahoo.com last updated on 06/Aug/17
If  f(x)= determinant (((sin x+sin2x+sin 3x),(sin 2x),(sin 3x)),((        3+4 sin x),(    3),(4 sin x)),((          1+sin x),( sin x),(    1)))  then the value of ∫_( 0) ^(π/2)  f(x) dx   is
Iff(x)=|sinx+sin2x+sin3xsin2xsin3x3+4sinx34sinx1+sinxsinx1|thenthevalueofπ/20f(x)dxis
Answered by ajfour last updated on 06/Aug/17
f(x)= determinant (((sin x+sin 2x+sin 3x),(sin 2x),(sin 3x)),((3+4sin x),3,(4sin x)),((1+sin x),(sin x),1))  C_1 →C_1 −C_2 −C_3   f(x)= determinant (((sin x),(sin 2x),(sin 3x)),(0,3,(4sin x)),(0,(sin x),1))  ⇒ f(x)=sin x(3−4sin^2 x)                =sin 3x  ∫_0 ^(  π/2) f(x)dx=∫_0 ^(  π/2) sin 3xdx                         =−(((cos 3x)/3))∣_0 ^(π/2)                ∫_0 ^(  π/2) f(x)dx = (1/3) .
f(x)=|sinx+sin2x+sin3xsin2xsin3x3+4sinx34sinx1+sinxsinx1|C1C1C2C3f(x)=|sinxsin2xsin3x034sinx0sinx1|f(x)=sinx(34sin2x)=sin3x0π/2f(x)dx=0π/2sin3xdx=(cos3x3)0π/20π/2f(x)dx=13.

Leave a Reply

Your email address will not be published. Required fields are marked *