Menu Close

If-f-x-is-an-odd-function-then-0-pi-f-cos-x-dx-2-0-pi-2-f-cos-x-dx-




Question Number 52949 by gunawan last updated on 15/Jan/19
If f(x) is an odd function, then  ∫_( 0) ^π  f (cos x) dx = 2∫_( 0) ^(π/2)  f (cos x) dx
Iff(x)isanoddfunction,thenπ0f(cosx)dx=2π/20f(cosx)dx
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Jan/19
re check the question...
recheckthequestion
Commented by maxmathsup by imad last updated on 15/Jan/19
∫_0 ^π f(cosx)dx =∫_0 ^(π/2) f(cosx)dx +∫_(π/2) ^π f(cosx)dx but  ∫_(π/2) ^π f(cosx)dx =_(x =(π/2)+t)   ∫_0 ^(π/2) f(−sint)dt =−∫_0 ^(π/2) f(sint)dt (f is odd)  =−∫_0 ^(π/2) f(cos((π/(2 ))−t))dt =_((π/(2  ))−t =u)   −∫_(π/2) ^0 f(cosu)(−du)  =−∫_0 ^(π/2) f(cosu)du ⇒∫_0 ^π f(cosx)dx =0   if f is even we get ∫_(π/2) ^π  f(cost)dt =_(x=(π/2)+t)    ∫_0 ^(π/2) f(−sint)dt =∫_0 ^(π/2) f(sint)dt  =∫_0 ^(π/2) f(cos((π/2)−t))dt =_((π/2)−t=u)   − ∫_(π/2) ^0  f(cosu)du=∫_0 ^(π/2) f(cosu)du ⇒  ∫_0 ^π f(cosx)dx =2 ∫_0 ^(π/2) f(cosx)dx so there is a error in the question!...
0πf(cosx)dx=0π2f(cosx)dx+π2πf(cosx)dxbutπ2πf(cosx)dx=x=π2+t0π2f(sint)dt=0π2f(sint)dt(fisodd)=0π2f(cos(π2t))dt=π2t=uπ20f(cosu)(du)=0π2f(cosu)du0πf(cosx)dx=0iffisevenwegetπ2πf(cost)dt=x=π2+t0π2f(sint)dt=0π2f(sint)dt=0π2f(cos(π2t))dt=π2t=uπ20f(cosu)du=0π2f(cosu)du0πf(cosx)dx=20π2f(cosx)dxsothereisaerrorinthequestion!
Commented by gunawan last updated on 16/Jan/19
thank you Sir
thankyouSir
Commented by maxmathsup by imad last updated on 16/Jan/19
you are welcome
youarewelcome

Leave a Reply

Your email address will not be published. Required fields are marked *