Menu Close

If-f-x-x-n-then-the-value-of-f-1-f-1-1-1-f-2-1-2-f-n-1-n-where-f-r-x-denotes-the-rth-order-derivative-of-f-x-with-respect-to-x-is-




Question Number 8155 by 314159 last updated on 02/Oct/16
If f(x)=x^n , then the value of  f(1) + ((f^1 (1))/1) + ((f^2 (1))/(2!)) + ... + ((f^( n) (1))/(n!)) , where  f^( r) (x) denotes the rth order derivative of  f(x) with respect to x , is
Iff(x)=xn,thenthevalueoff(1)+f1(1)1+f2(1)2!++fn(1)n!,wherefr(x)denotestherthorderderivativeoff(x)withrespecttox,is
Commented by sou1618 last updated on 02/Oct/16
  f^1 (x)=nx^(n−1)   f^2 (x)=n(n−1)x^(n−2)   ...  f^r (x)=n(n−1)(n−2)...(n−r+1)x^(n−r)     //////////  find S=1+(n/(1!))+((n(n−1))/(2!))+((n(n−1)(n−2))/(3!))+...+((n!)/(n!))  ⇔  S=1+((n!)/(1!(n−1)!))+((n!)/(2!(n−2)!))+((n!)/(3!(n−3)!))+...+((n!)/(n!(n−n)!))  =_n C_0 +_n C_1 +_n C_2 +_n C_3 +...+_n C_n   ∗ _n C_r = ((n),(r) )=((n!)/(r!(n−r)!))  =Σ_(k=0) ^n  _n C_k   ////////////  set g(x)=(1+x)^n   g(x)=Σ_(k=0) ^n (1^k x^(n−k)  _n C_k ).  g(1)=Σ_(k=0) ^n  _n C_k =S  g(1)=(1+1)^n =2^n   so  S=2^n
f1(x)=nxn1f2(x)=n(n1)xn2fr(x)=n(n1)(n2)(nr+1)xnr//////////findS=1+n1!+n(n1)2!+n(n1)(n2)3!++n!n!S=1+n!1!(n1)!+n!2!(n2)!+n!3!(n3)!++n!n!(nn)!=nC0+nC1+nC2+nC3++nCnnCr=(nr)=n!r!(nr)!=nk=0nCk////////////setg(x)=(1+x)ng(x)=nk=0(1kxnknCk).g(1)=nk=0nCk=Sg(1)=(1+1)n=2nsoS=2n
Commented by 314159 last updated on 02/Oct/16
Thanks!
Thanks!
Answered by prakash jain last updated on 02/Oct/16
Answer in comments
Answerincomments

Leave a Reply

Your email address will not be published. Required fields are marked *