Menu Close

If-g-x-0-x-cos-4-t-dt-then-g-x-pi-




Question Number 30354 by soksan last updated on 21/Feb/18
If  g(x)=∫_0 ^x cos^4 t dt, then g (x+π) =
Ifg(x)=x0cos4tdt,theng(x+π)=
Answered by ajfour last updated on 21/Feb/18
g(x)=(1/4)∫_0 ^(  x) (2cos^2 t)^2 dt           =(1/4)∫_0 ^(  x) (1+cos 2t)^2 dt           =(1/4)∫_0 ^(  x) (1+2cos 2t+cos^2 2t)dt          =(x/4)+((sin 2x)/4)+(1/8)∫_0 ^(  x) (1+cos 4t)dt          =(x/4)+((sin 2x)/4)+(x/8)+((sin 4x)/(32))  g(x+π)= g(x)+((3π)/8)  .
g(x)=140x(2cos2t)2dt=140x(1+cos2t)2dt=140x(1+2cos2t+cos22t)dt=x4+sin2x4+180x(1+cos4t)dt=x4+sin2x4+x8+sin4x32g(x+π)=g(x)+3π8.

Leave a Reply

Your email address will not be published. Required fields are marked *