Menu Close

If-I-0-1-dx-1-x-4-then-




Question Number 63065 by Enebeli Chinedu Vitalis last updated on 28/Jun/19
If I=∫_( 0) ^1  (dx/( (√(1+x^4 )))) , then
IfI=10dx1+x4,then
Commented by Enebeli Chinedu Vitalis last updated on 28/Jun/19
thanks boss★★
thanksboss
Commented by mathmax by abdo last updated on 28/Jun/19
changement x^2 =tanθ give x =(tanθ)^(1/2)  ⇒I =∫_0 ^(π/4)    (1/(2(√(1+tan^2 θ))))(1+tan^2 θ)(tanθ)^(−(1/2)) dθ  = (1/2)∫_0 ^(π/4)     (√(1+tan^2 θ))(tanθ)^(−(1/2))  =(1/2) ∫_0 ^(π/4) (1/(cosθ (√((sinθ)/(cosθ))))) =(1/2) ∫_0 ^(π/2)  (dθ/( (√(cosθsinθ))))  =(1/( (√2))) ∫_0 ^(π/2)   (dθ/( (√(sin(2θ))))) =(1/( (√2)))∫_0 ^π    (dt/(2(√(sint))))                                      (2θ=t)  =(1/(2(√2))) ∫_0 ^π      (dt/( (√(sint))))  changement  tan((t/2)) =u give  ∫_0 ^π   (dt/( (√(sint)))) =∫_0 ^∞         ((2du)/((1+u^2 )(√((2u)/(1+u^2 ))))) =(√2) ∫_0 ^∞       (du/( (√u)(√(1+u^2 ))))  =_((√u)=α)     (√2)∫_0 ^∞    ((2αdα)/(α(√(1+α^4 ))))  =2(√2)∫_0 ^∞     (dα/( (√(1+α^4 )))) ⇒I =∫_0 ^∞     (dx/( (√(1+x^4 ))))  I =∫_0 ^1   (dx/( (√(1+x^4 )))) + ∫_1 ^(+∞)    (dx/( (√(1+x^4 )))) ⇒ ∫_1 ^(+∞)   (dx/( (√(1+x^4 )))) =0....be contnued....
changementx2=tanθgivex=(tanθ)12I=0π4121+tan2θ(1+tan2θ)(tanθ)12dθ=120π41+tan2θ(tanθ)12=120π41cosθsinθcosθ=120π2dθcosθsinθ=120π2dθsin(2θ)=120πdt2sint(2θ=t)=1220πdtsintchangementtan(t2)=ugive0πdtsint=02du(1+u2)2u1+u2=20duu1+u2=u=α202αdαα1+α4=220dα1+α4I=0dx1+x4I=01dx1+x4+1+dx1+x41+dx1+x4=0.becontnued.
Commented by mathmax by abdo last updated on 28/Jun/19
you are welcome.
youarewelcome.

Leave a Reply

Your email address will not be published. Required fields are marked *