Menu Close

If-I-1-e-e-2-dx-log-x-and-I-2-1-2-e-x-x-dx-then-




Question Number 83077 by mhmd last updated on 27/Feb/20
If   I_1 =∫_e ^e^2   (dx/(log x))  and  I_2 = ∫_( 1) ^2  (e^x /x) dx, then
IfI1=e2edxlogxandI2=21exxdx,then
Answered by TANMAY PANACEA last updated on 28/Feb/20
t=lnx   (dt/dx)=(1/x)→e^t dt=dx so I_1 =∫_1 ^2 ((e^t dt)/t)=I_2   I_1 =I_2   now  e^t =1+t+(t^2 /(2!))+(t^3 /(3!))+(t^4 /(4!))+...  ∫_1 ^2 ((1+t+(t^2 /(2!))+(t^3 /(3!))+(t^4 /(4!))+...)/t)dt  ∫_1 ^2 ((1/t)+1+(t/(2!))+(t^2 /(3!))+(t^3 /(4!))+...)dt  ∣((lnt)/1)+(t/1)+(t^2 /(2!×2))+(t^3 /(3!×3))+...∣_1 ^2   =ln((2/1))+(2−1)+((2^2 −1^2 )/(2!×2))+((2^3 −1^3 )/(3!×3))+...
t=lnxdtdx=1xetdt=dxsoI1=12etdtt=I2I1=I2nowet=1+t+t22!+t33!+t44!+121+t+t22!+t33!+t44!+tdt12(1t+1+t2!+t23!+t34!+)dtlnt1+t1+t22!×2+t33!×3+12=ln(21)+(21)+22122!×2+23133!×3+

Leave a Reply

Your email address will not be published. Required fields are marked *