Menu Close

If-I-1-e-e-2-dx-log-x-and-I-2-1-2-e-x-x-dx-then-




Question Number 83078 by mhmd last updated on 27/Feb/20
If   I_1 =∫_e ^e^2   (dx/(log x))  and  I_2 = ∫_( 1) ^2  (e^x /x) dx, then
IfI1=e2edxlogxandI2=21exxdx,then
Commented by mathmax by abdo last updated on 27/Feb/20
I_1 =_(lnx=t)    ∫_1 ^2  ((e^t  dt)/t) ⇒ I_1 =I_2   at form of serie I_1 =∫_1 ^2  (1/t)(Σ_(n=0) ^∞  (t^n /(n!)))dt  =∫_1 ^2 (dt/t) +∫_1 ^2 Σ_(n=1) ^∞  (t^(n−1) /(n!))dt =ln(2)+Σ_(n=1) ^∞ (1/(n!)) ∫_1 ^2  t^(n−1)  dt  =ln(2)+Σ_(n=1) ^∞  (1/(n!))×[(1/n)t^n ]_1 ^2  =ln(2)+Σ_(n=1) ^∞  (1/(n×n!))(2^n −1)
I1=lnx=t12etdttI1=I2atformofserieI1=121t(n=0tnn!)dt=12dtt+12n=1tn1n!dt=ln(2)+n=11n!12tn1dt=ln(2)+n=11n!×[1ntn]12=ln(2)+n=11n×n!(2n1)

Leave a Reply

Your email address will not be published. Required fields are marked *