Menu Close

If-I-n-0-e-x-x-n-1-dx-then-0-e-x-x-n-1-dx-




Question Number 9866 by richard last updated on 10/Jan/17
If I_n =∫_( 0) ^∞  e^(−x)  x^(n−1)  dx, then ∫_( 0) ^∞  e^(−λx)  x^(n−1) dx =
$$\mathrm{If}\:{I}_{{n}} =\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:{e}^{−{x}} \:{x}^{{n}−\mathrm{1}} \:{dx},\:\mathrm{then}\:\underset{\:\mathrm{0}} {\overset{\infty} {\int}}\:{e}^{−\lambda{x}} \:{x}^{{n}−\mathrm{1}} {dx}\:= \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *