Menu Close

If-in-a-ABC-3a-b-c-then-the-value-of-cot-B-2-cot-B-2-is-




Question Number 113822 by deepraj123 last updated on 15/Sep/20
If  in a △ABC, 3a=b+c, then the  value of  cot (B/2) cot (B/2) is
$$\mathrm{If}\:\:\mathrm{in}\:\mathrm{a}\:\bigtriangleup{ABC},\:\mathrm{3}{a}={b}+{c},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{value}\:\mathrm{of}\:\:\mathrm{cot}\:\frac{{B}}{\mathrm{2}}\:\mathrm{cot}\:\frac{{B}}{\mathrm{2}}\:\mathrm{is} \\ $$
Answered by $@y@m last updated on 15/Sep/20
cot^2 (B/2)=((s(s−b))/((s−a)(s−c)))   Formula   Given,  3a=b+c  4a=a+b+c=2s  s=2a  ∴cot^2 (B/2)=((2a(2a−b))/(a(2a−c)))=((2(2a−b))/((2a−c)))
$$\mathrm{cot}\:^{\mathrm{2}} \frac{{B}}{\mathrm{2}}=\frac{{s}\left({s}−{b}\right)}{\left({s}−{a}\right)\left({s}−{c}\right)}\:\: {Formula} \\ $$$${Given}, \\ $$$$\mathrm{3}{a}={b}+{c} \\ $$$$\mathrm{4}{a}={a}+{b}+{c}=\mathrm{2}{s} \\ $$$${s}=\mathrm{2}{a} \\ $$$$\therefore\mathrm{cot}\:^{\mathrm{2}} \frac{{B}}{\mathrm{2}}=\frac{\mathrm{2}{a}\left(\mathrm{2}{a}−{b}\right)}{{a}\left(\mathrm{2}{a}−{c}\right)}=\frac{\mathrm{2}\left(\mathrm{2}{a}−{b}\right)}{\left(\mathrm{2}{a}−{c}\right)} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *