Menu Close

If-in-a-ABC-8R-2-a-2-b-2-c-2-then-the-ABC-is-




Question Number 95512 by bagjamath last updated on 25/May/20
If  in a △ABC, 8R^2 = a^2 +b^2 +c^2 , then  the △ABC is
$$\mathrm{If}\:\:\mathrm{in}\:\mathrm{a}\:\bigtriangleup{ABC},\:\mathrm{8}{R}^{\mathrm{2}} =\:{a}^{\mathrm{2}} +{b}^{\mathrm{2}} +{c}^{\mathrm{2}} ,\:\mathrm{then} \\ $$$$\mathrm{the}\:\bigtriangleup{ABC}\:\mathrm{is} \\ $$
Commented by som(math1967) last updated on 25/May/20
Rt angle triangle
$$\mathrm{Rt}\:\mathrm{angle}\:\mathrm{triangle} \\ $$
Commented by som(math1967) last updated on 25/May/20
a^2 +b^2 +c^2 =8R^2   4R^2 (sin^2 A+sin^2 B+sin^2 c)=8R^2   2sin^2 A+2sin^2 B+2sin^2 C=4  cos2A+cos2B+2cos^2 C=0  2cos(A+B)cos (A−B)+2cos^2 C=0  −cosCcos(A−B)+cos^2 C=0★  −cosC{cos(A−B)−cos(A+B)=0★  2cosCcos Acos B=0  eithercos C=0/cosB=0/cosA=0  ∴∠C=90 or∠B=90 or∠A=90  ★cos(A+B)=cos(π−C)=−cosC
$$\mathrm{a}^{\mathrm{2}} +\mathrm{b}^{\mathrm{2}} +\mathrm{c}^{\mathrm{2}} =\mathrm{8R}^{\mathrm{2}} \\ $$$$\mathrm{4R}^{\mathrm{2}} \left(\mathrm{sin}^{\mathrm{2}} \mathrm{A}+\mathrm{sin}^{\mathrm{2}} \mathrm{B}+\mathrm{sin}\:^{\mathrm{2}} \mathrm{c}\right)=\mathrm{8R}^{\mathrm{2}} \\ $$$$\mathrm{2sin}^{\mathrm{2}} \mathrm{A}+\mathrm{2sin}^{\mathrm{2}} \mathrm{B}+\mathrm{2sin}^{\mathrm{2}} \mathrm{C}=\mathrm{4} \\ $$$$\mathrm{cos2A}+\mathrm{cos2B}+\mathrm{2cos}^{\mathrm{2}} \mathrm{C}=\mathrm{0} \\ $$$$\mathrm{2cos}\left(\mathrm{A}+\mathrm{B}\right)\mathrm{cos}\:\left(\mathrm{A}−\mathrm{B}\right)+\mathrm{2cos}^{\mathrm{2}} \mathrm{C}=\mathrm{0} \\ $$$$−\mathrm{cosCcos}\left(\mathrm{A}−\mathrm{B}\right)+\mathrm{cos}^{\mathrm{2}} \mathrm{C}=\mathrm{0}\bigstar \\ $$$$−\mathrm{cosC}\left\{\mathrm{cos}\left(\mathrm{A}−\mathrm{B}\right)−\mathrm{cos}\left(\mathrm{A}+\mathrm{B}\right)=\mathrm{0}\bigstar\right. \\ $$$$\mathrm{2cosCcos}\:\mathrm{Acos}\:\mathrm{B}=\mathrm{0} \\ $$$$\mathrm{eithercos}\:\mathrm{C}=\mathrm{0}/\mathrm{cosB}=\mathrm{0}/\mathrm{cosA}=\mathrm{0} \\ $$$$\therefore\angle\mathrm{C}=\mathrm{90}\:\mathrm{or}\angle\mathrm{B}=\mathrm{90}\:\mathrm{or}\angle\mathrm{A}=\mathrm{90} \\ $$$$\bigstar\mathrm{cos}\left(\mathrm{A}+\mathrm{B}\right)=\mathrm{cos}\left(\pi−\mathrm{C}\right)=−\mathrm{cosC} \\ $$
Commented by bagjamath last updated on 25/May/20
Very Nice  Thank You Sir
$${Very}\:{Nice} \\ $$$${Thank}\:{You}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *