Menu Close

If-in-a-ABC-a-2-b-2-a-2-b-2-sin-A-B-sin-A-B-then-the-triangle-is-




Question Number 113991 by deepraj123 last updated on 16/Sep/20
If  in a △ABC, ((a^2 −b^2 )/(a^2 +b^2 )) = ((sin (A−B))/(sin (A+B))) ,  then the triangle is
IfinaABC,a2b2a2+b2=sin(AB)sin(A+B),thenthetriangleis
Commented by som(math1967) last updated on 16/Sep/20
Either isoscale or rt.angle
Eitherisoscaleorrt.angle
Answered by 1549442205PVT last updated on 17/Sep/20
We have ((a^2 −b^2 )/(a^2 +b^2 )) = ((sin (A−B))/(sin (A+B)))  ⇔((a^2 −b^2 )/(sin(A−B)))=((a^2 +b^2 )/(sin(A+B)))=((2a^2 )/(sin(A−B)+sin(A+B)))=((2b^2 )/(sin(A+B)−sin(A−B)))  ⇒((2a^2 )/(2sinAcosB))=((2b^2 )/(2cosAsinB))(1)  From sine theorem (a/(sinA))=(b/(sinB)) we get  (1)⇔((4R^2 sin^2 A)/(sinAcosB))=((4R^2 sin^2 B)/(sinBcosA))  ⇔((sinA)/(cosB))=((sinB)/(cosA))⇔2sinAcosA=2sinBcosB  ⇔sin2A=sin2B⇔2A=2B  (2) or  2A=180°−2B(3)  (2)⇔A=B⇔ΔABC is isosceles at C  (3)⇔A=90°−B⇔ΔABC is right at C
Wehavea2b2a2+b2=sin(AB)sin(A+B)a2b2sin(AB)=a2+b2sin(A+B)=2a2sin(AB)+sin(A+B)=2b2sin(A+B)sin(AB)2a22sinAcosB=2b22cosAsinB(1)FromsinetheoremasinA=bsinBweget(1)4R2sin2AsinAcosB=4R2sin2BsinBcosAsinAcosB=sinBcosA2sinAcosA=2sinBcosBsin2A=sin2B2A=2B(2)or2A=180°2B(3)(2)A=BΔABCisisoscelesatC(3)A=90°BΔABCisrightatC

Leave a Reply

Your email address will not be published. Required fields are marked *