Menu Close

If-log-2-x-1-e-x-1-dx-pi-6-then-x-




Question Number 64265 by Chi Mes Try last updated on 16/Jul/19
If ∫_(log 2) ^x   (1/( (√(e^x −1)))) dx = (π/6), then x =
Ifxlog21ex1dx=π6,thenx=
Commented by mathmax by abdo last updated on 17/Jul/19
let I =∫_(ln2) ^x   (dx/( (√(e^x −1))))  changement (√(e^x −1))=t give e^x −1=t^2  ⇒  e^x  =1+t^2  ⇒x=ln(1+t^2 )  ⇒I = ∫_1 ^(√(e^x −1))   ((2t)/((1+t^2 )t)) dt  =2 ∫_1 ^(√(e^x −1))  (dt/(1+t^2 )) =2[arctan(t)]_1 ^(√(e^x −1))  =2{arctan(√(e^x −1))−(π/4)}  I=(π/6) ⇒2 arctan(√(e^x −1))−(π/2) =(π/6) ⇒2arctan(√(e^x −1))=(π/2) +(π/6) =((2π)/3)  ⇒(√(e^x −1))=(π/3) ⇒e^x −1 =(π^2 /9) ⇒e^x  =1+(π^2 /9) ⇒x =ln(1+(π^2 /9)) .
letI=ln2xdxex1changementex1=tgiveex1=t2ex=1+t2x=ln(1+t2)I=1ex12t(1+t2)tdt=21ex1dt1+t2=2[arctan(t)]1ex1=2{arctanex1π4}I=π62arctanex1π2=π62arctanex1=π2+π6=2π3ex1=π3ex1=π29ex=1+π29x=ln(1+π29).
Commented by mathmax by abdo last updated on 17/Jul/19
error at final line arctan(√(e^x −1))=(π/3) ⇒(√(e^x −1))=tan((π/3))=(√(3 )) ⇒  e^x −1 =3 ⇒e^x  =4 ⇒x =ln(4)=2ln(2).
erroratfinallinearctanex1=π3ex1=tan(π3)=3ex1=3ex=4x=ln(4)=2ln(2).
Answered by Tanmay chaudhury last updated on 16/Jul/19
∫(dx/( (√(e^x −1))))      t^2 =e^x −1  2t×(dt/dx)=e^x   ((2t)/(1+t^2 ))dt=dx  ∫((2t)/(1+t^2 ))×(1/t)dt  2tan^(−1) (t)+c  2tan^(−1) ((√(e^x −1)) )+c  ∫_0 ^x (dx/( (√(e^x −1))))  =2∣tan^(−1) (√(e^x −1)) ∣_(ln2) ^x   =2[(tan^(−1) (√(e^x −1)) )−tan^(−1) ((√(e^(ln2) −1)) )]  =2[tan^(−1) (√(e^x −1)) −(π/4)]  so   tan^(−1) (√(e^x −1)) =(π/(12))+(π/4)  (√(e^x −1)) =tan((π/3))  e^x −1=3  e^x =4  x=ln4     Tanmay  16.07.19
dxex1t2=ex12t×dtdx=ex2t1+t2dt=dx2t1+t2×1tdt2tan1(t)+c2tan1(ex1)+c0xdxex1=2tan1ex1ln2x=2[(tan1ex1)tan1(eln21)]=2[tan1ex1π4]sotan1ex1=π12+π4ex1=tan(π3)ex1=3ex=4x=ln4Tanmay16.07.19

Leave a Reply

Your email address will not be published. Required fields are marked *