Menu Close

If-n-an-odd-natural-number-then-r-0-n-1-r-n-C-r-equals-




Question Number 55784 by gunawan last updated on 04/Mar/19
If n an odd natural number, then  Σ_(r=0) ^n  (((−1)^r )/(^n C_r  )) equals
Ifnanoddnaturalnumber,thennr=0(1)rnCrequals
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19
S=T_0 +T_1 +T_2 +...+T_n   =(((−1)^0 )/((n!)/(0!(n−0)!)))+(((−1)^1 )/((n!)/(1!(n−1)!)))+(((−1)^2 )/((n!)/(2!(n−2)!)))+(((−1)^3 )/((n!)/(3!(n−3)!)))+...+(((−1)^n )/((n!)/(n!(n−n)!)))    =((0!(n−0)!)/(n!))−((1!(n−1)!)/(n!))+((2!(n−2)!)/(n!))−((3!(n−3)!)/(n!))+..−((n!(n−n)!)/(n!))    now look T_0 =((0!(n−0)!)/(n!))=1  T_n =((−n!(n−n)!)/(n!))=−1  T_0 +T_n =0    T_1 =((−1!(n−1)!)/(n!))=((−1)/(n−1))  T_(n−1) =(((−1)^(n−1) ×(n−1)!(1)!)/(n!))=(1/(n−1))  T_1 +T_(n−1) =0    now  let n=2k+1 terms →k=((n−1)/2)  middle term is (k+1)_(th)  term  k+1→(((n−1)/2)+1)→((n+1)/2)    k+1 th term→((n+1)/2) term→(((−1)^((n+1)/2) )/(nc_((n+1)/2) ))  =(((((n+1)/2))!(n−((n+1)/2))!)/(n!))→(((((n+1)/2))!(((n−1)/2))!)/(n!))    now on addition all terms ancelled each other  as explained above...only one term remain  so S=(((((n+1)/2))!(((n−1)/2))!)/n)←this is the answer
S=T0+T1+T2++Tn=(1)0n!0!(n0)!+(1)1n!1!(n1)!+(1)2n!2!(n2)!+(1)3n!3!(n3)!++(1)nn!n!(nn)!=0!(n0)!n!1!(n1)!n!+2!(n2)!n!3!(n3)!n!+..n!(nn)!n!nowlookT0=0!(n0)!n!=1Tn=n!(nn)!n!=1T0+Tn=0T1=1!(n1)!n!=1n1Tn1=(1)n1×(n1)!(1)!n!=1n1T1+Tn1=0nowletn=2k+1termsk=n12middletermis(k+1)thtermk+1(n12+1)n+12k+1thtermn+12term(1)n+12ncn+12=(n+12)!(nn+12)!n!(n+12)!(n12)!n!nowonadditionalltermsancelledeachotherasexplainedaboveonlyonetermremainsoS=(n+12)!(n12)!nthisistheanswer

Leave a Reply

Your email address will not be published. Required fields are marked *