Question Number 16383 by aamaguestt last updated on 21/Jun/17
$$\mathrm{If}\:\mathrm{P}\::\:\mathrm{Q}\::\:\mathrm{R}\:=\:\mathrm{2}\::\:\mathrm{3}\::\:\mathrm{4}\:\mathrm{and}\:\mathrm{P}^{\mathrm{2}} +\mathrm{Q}^{\mathrm{2}} +\mathrm{R}^{\mathrm{2}} =\mathrm{11600}, \\ $$$$\mathrm{then}\:\mathrm{find}\:\left(\mathrm{P}+\mathrm{Q}−\mathrm{R}\right). \\ $$
Answered by ajfour last updated on 21/Jun/17
$$\:{p}^{\mathrm{2}} \left[\mathrm{1}+\left(\frac{{q}}{{p}}\right)^{\mathrm{2}} +\left(\frac{{r}}{{p}}\right)^{\mathrm{2}} \right]\:=\:\mathrm{29}×\mathrm{400} \\ $$$$\:{p}^{\mathrm{2}} \left[\mathrm{1}+\frac{\mathrm{9}}{\mathrm{4}}+\mathrm{4}\right]\:=\:\mathrm{29}×\mathrm{400} \\ $$$$\Rightarrow\:{p}^{\mathrm{2}} =\frac{\mathrm{29}×\mathrm{400}×\mathrm{4}}{\mathrm{29}}\:=\mathrm{1600} \\ $$$$\:\left({p}+{q}−{r}\right)^{\mathrm{2}} ={p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} +\mathrm{2}\left({pq}−{qr}−{rp}\right) \\ $$$$\:\:?^{\:\mathrm{2}} \:=\:\mathrm{29}×\mathrm{400}+\mathrm{2}{p}^{\mathrm{2}} \left[\frac{{q}}{{p}}−\left(\frac{{q}}{{p}}\right)\left(\frac{{r}}{{p}}\right)−\frac{{r}}{{p}}\right] \\ $$$$\:\:\:=\:\mathrm{29}×\mathrm{400}+\mathrm{2}×\mathrm{1600}\left[\frac{\mathrm{3}}{\mathrm{2}}−\frac{\mathrm{3}}{\mathrm{2}}×\mathrm{2}−\mathrm{2}\right] \\ $$$$\:?^{\:\mathrm{2}} =\mathrm{29}×\mathrm{400}+\mathrm{2}×\mathrm{1600}\left(−\:\frac{\mathrm{7}}{\mathrm{2}}\right) \\ $$$$\:\:?^{\:\mathrm{2}} \:=\mathrm{400}\left(\mathrm{29}−\mathrm{28}\right)\:=\:\mathrm{400} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:?\:=\:\pm\:\mathrm{20}\:. \\ $$
Commented by chux last updated on 21/Jun/17
$$\mathrm{mr}\:\mathrm{Ajfour}….\:\mathrm{I}\:\mathrm{love}\:\mathrm{this}\:\mathrm{style}. \\ $$
Commented by ajfour last updated on 21/Jun/17
$${i}\:{call}\:{it}\:{convenience}..,\:{thanks}. \\ $$
Commented by chux last updated on 21/Jun/17
$$\mathrm{exactly}….\:\mathrm{thats}\:\mathrm{the}\:\mathrm{word}. \\ $$
Answered by RasheedSoomro last updated on 21/Jun/17
$$\mathrm{P}\::\:\mathrm{Q}\::\:\mathrm{R}\:=\:\mathrm{2}\::\:\mathrm{3}\::\:\mathrm{4} \\ $$$$\mathrm{P}^{\mathrm{2}} +\mathrm{Q}^{\mathrm{2}} +\mathrm{R}^{\mathrm{2}} =\mathrm{11600} \\ $$$$\mathrm{P}+\mathrm{Q}−\mathrm{R}=? \\ $$$$−−−−−−−−−−−−−−−−−−−−−− \\ $$$$\mathrm{Let}\:\mathrm{P}=\mathrm{2k},\mathrm{Q}=\mathrm{3k}\:\mathrm{and}\:\mathrm{R}=\mathrm{4k} \\ $$$$\left(\mathrm{2k}\right)^{\mathrm{2}} +\left(\mathrm{3k}\right)^{\mathrm{2}} +\left(\mathrm{4k}\right)^{\mathrm{2}} =\mathrm{11600} \\ $$$$\mathrm{29k}^{\mathrm{2}} =\mathrm{11600} \\ $$$$\mathrm{k}^{\mathrm{2}} =\frac{\mathrm{11600}}{\mathrm{29}}=\mathrm{400} \\ $$$$\mathrm{k}=\pm\mathrm{20} \\ $$$$\mathrm{P}+\mathrm{Q}−\mathrm{R}=\mathrm{2k}+\mathrm{3k}−\mathrm{4k}=\mathrm{k}=\pm\mathrm{20} \\ $$
Commented by ajfour last updated on 21/Jun/17
$${much}\:{better}\:{sir}\:. \\ $$
Commented by RasheedSoomro last updated on 21/Jun/17
$$\mathrm{Not}\:\mathrm{better}\:\mathrm{sir},\:\mathrm{only}\:\mathrm{a}\:\mathrm{different}\:\mathrm{way}. \\ $$