If-R-7-4-3-2n-I-f-where-I-N-and-0-lt-f-lt-1-then-R-1-f-equals- Tinku Tara June 14, 2023 None 0 Comments FacebookTweetPin Question Number 108453 by gospelkenny last updated on 17/Aug/20 IfR=(7+43)2n=I+f,whereI∈Nand0<f<1,thenR(1−f)equals Answered by 1549442205PVT last updated on 17/Aug/20 SetQ=(7−43)2n⇒RQ=[(7+43)n(7−43)n=1(∗)WeprovethatS=R+Q∈N∗.Indeed,i)Forn=1wegetS=(7+43)+(7−43)=14⇒Stateistrueforn=1ii)SupposeStateistrue∀n=1…k―⇒Sk=(7+43)k+(7−43)k=mk∈Niii)ConsiderSk+1=(7+43)k+1+(7−43)k+1=[(7+43)k+(7−43)k][(7+43)+(7−43)]−[(7+43)×(7−43)][(7+43)k−1+(7−43)k−1]=14Sk−Sk−1=14mk−mk−1∈N∗(bytheintroductionhypothesismk,mk−1∈N∗)Thisshowsthatthestateisalsotrueforn=k+1Hencebytheimtroductionprinciplethestateistruefor∀n∈N∗whichmeans(R+Q)∈N∗⇒(R+Q)2∈N∗⇔R+Q=(R+Q)2−2∈N∗⇒(7+43)2n+(7−43)2n=q∈N∗(∗∗)Ontheotherhands,byabovewehave[(7+43)2n×(7−43)2n]=1⇒0<(7−43)2n=1(7+43)2n<1Therefore,ifR=(7+43)2n=I+fandI∈Nand0<f<1thenby(∗∗)I=qandf=(7−43)2n.ItfollowsthatR(1−f)=R−Rf=(7+43)2n−[(7+43)2n×(7−43)2n]=(7+43)2n−1Thus,R(1−f)=(7+43)2n−1 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: The-sides-AB-BC-CA-of-a-triangleABC-have-3-4-and-5-interior-points-respectively-on-them-The-total-number-of-triangles-that-can-be-constructed-by-using-these-points-as-vertices-is-Next Next post: The-solution-of-sin-1-2a-1-a-2-cos-1-1-b-2-1-b-2-tan-1-2x-1-x-2-is- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.