Menu Close

If-R-7-4-3-2n-I-f-where-I-N-and-0-lt-f-lt-1-then-R-1-f-equals-




Question Number 108453 by gospelkenny last updated on 17/Aug/20
If  R=(7+4(√3))^(2n)  = I+f, where I ∈ N  and   0<f<1, then R(1−f) equals
IfR=(7+43)2n=I+f,whereINand0<f<1,thenR(1f)equals
Answered by 1549442205PVT last updated on 17/Aug/20
Set Q=(7−4(√3))^(2n) ⇒(√(RQ))=[(7+4(√3))^n (7−4(√3))^n =1(∗)  We prove that  S= (√R)+(√Q)∈N^∗ .Indeed,  i)For n=1we get S=(7+4(√3))+(7−4(√3))  =14⇒State is true for n=1  ii)Suppose State is true ∀ n=1...k^(−)    ⇒S_k =(7+4(√3))^k +(7−4(√3))^k =m_k ∈N  iii)Consider S_(k+1) =(7+4(√3))^(k+1) +(7−4(√3))^(k+1)   =[(7+4(√3))^k +(7−4(√3))^k ][(7+4(√3))+(7−4(√3))]  −[(7+4(√3))×(7−4(√3))][(7+4(√3))^(k−1) +(7−4(√3))^(k−1) ]  =14S_k −S_(k−1) =14m_k −m_(k−1) ∈N^∗   (by the introduction hypothesis m_k ,m_(k−1) ∈N^∗ )  This shows that the state is also true for n=k+1  Hence by the imtroduction principle  the state is true for ∀n∈N^∗ which   means ((√R)+(√Q))∈N^∗ ⇒((√R)+(√Q))^2 ∈N^∗   ⇔R+Q=((√R)+(√Q))^2 −2∈N^∗   ⇒(7+4(√3))^(2n) +(7−4(√3))^(2n) =q∈N^∗  (∗∗)  On the other hands,by above we have  [(7+4(√3))^(2n) ×(7−4(√3))^(2n) ]=1  ⇒0<(7−4(√3))^(2n) =(1/((7+4(√3))^(2n) ))<1  Therefore ,if R=(7+4(√3))^(2n) =I+f and  I∈N and 0<f<1 then by (∗∗)  I=q and f=(7−4(√3))^(2n)  .It follows that  R(1−f)=R−Rf=(7+4(√3))^(2n) −[(7+4(√3))^(2n) ×(7−4(√3))^(2n) ]  =(7+4(√3))^(2n) −1   Thus,R(1−f)=(7+4(√3))^(2n) −1
SetQ=(743)2nRQ=[(7+43)n(743)n=1()WeprovethatS=R+QN.Indeed,i)Forn=1wegetS=(7+43)+(743)=14Stateistrueforn=1ii)SupposeStateistruen=1kSk=(7+43)k+(743)k=mkNiii)ConsiderSk+1=(7+43)k+1+(743)k+1=[(7+43)k+(743)k][(7+43)+(743)][(7+43)×(743)][(7+43)k1+(743)k1]=14SkSk1=14mkmk1N(bytheintroductionhypothesismk,mk1N)Thisshowsthatthestateisalsotrueforn=k+1HencebytheimtroductionprinciplethestateistruefornNwhichmeans(R+Q)N(R+Q)2NR+Q=(R+Q)22N(7+43)2n+(743)2n=qN()Ontheotherhands,byabovewehave[(7+43)2n×(743)2n]=10<(743)2n=1(7+43)2n<1Therefore,ifR=(7+43)2n=I+fandINand0<f<1thenby()I=qandf=(743)2n.ItfollowsthatR(1f)=RRf=(7+43)2n[(7+43)2n×(743)2n]=(7+43)2n1Thus,R(1f)=(7+43)2n1

Leave a Reply

Your email address will not be published. Required fields are marked *