Question Number 90629 by Josephbaraka@gmail.com last updated on 25/Apr/20
$$\mathrm{If}\:\:\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)−\mathrm{2}\:\mathrm{sin}^{−\mathrm{1}} {x}\:=\:\frac{\pi}{\mathrm{2}},\:\mathrm{then}\:{x}= \\ $$
Commented by jagoll last updated on 25/Apr/20
$${let}\:\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)\:=\:{y} \\ $$$$\mathrm{1}−{x}\:=\:\mathrm{sin}\:{y}\:\Rightarrow{x}\:=\:\mathrm{1}−\mathrm{sin}\:{y} \\ $$$$\mathrm{2sin}^{−\mathrm{1}} \left({x}\right)\:=\:{p}\:\Rightarrow{x}\:=\:\mathrm{sin}\:\left(\frac{{p}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\mathrm{cos}\:\left({y}−{p}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{cos}\:{y}\:\mathrm{cos}\:{p}\:+\:\mathrm{sin}\:{y}\:\mathrm{sin}\:{p}\:=\:\mathrm{0} \\ $$$$\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} }\:\left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \right)\:=\:\left({x}−\mathrm{1}\right)\left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right) \\ $$$$ \\ $$
Answered by TANMAY PANACEA. last updated on 25/Apr/20
$${sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)=\frac{\pi}{\mathrm{2}}+\mathrm{2}{sin}^{−\mathrm{1}} {x} \\ $$$${sin}\left({sin}^{−\mathrm{1}} \left(\mathrm{1}−{x}\right)\right)={sin}\left(\frac{\pi}{\mathrm{2}}+\mathrm{2}{sin}^{−\mathrm{1}} {x}\right) \\ $$$$\mathrm{1}−{x}={cos}\left(\mathrm{2}{sin}^{−\mathrm{1}} {x}\right) \\ $$$${sin}\theta={x}\:\:\:{so}\:\:\:\:{cos}\mathrm{2}\theta=\mathrm{2}{sin}^{\mathrm{2}} \theta−\mathrm{1}=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{1}−{x}=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1} \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +{x}−\mathrm{2}=\mathrm{0} \\ $$$${x}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{1}+\mathrm{16}}}{\mathrm{4}}=\frac{−\mathrm{1}\pm\sqrt{\mathrm{17}}}{\mathrm{4}} \\ $$