Menu Close

If-tan-2-2-tan-2-1-then-cos-2-sin-2-equals-




Question Number 16485 by 09798887650 last updated on 23/Jun/17
If tan^2 θ=2 tan^2 φ+1, then cos 2θ+sin^2 φ  equals
$$\mathrm{If}\:\mathrm{tan}^{\mathrm{2}} \theta=\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} \phi+\mathrm{1},\:\mathrm{then}\:\mathrm{cos}\:\mathrm{2}\theta+\mathrm{sin}^{\mathrm{2}} \phi \\ $$$$\mathrm{equals} \\ $$
Answered by Tinkutara last updated on 23/Jun/17
cos 2θ = ((1 − tan^2  θ)/(1 + tan^2  θ)) = ((−2 tan^2  φ)/(2 sec^2  φ)) = −sin^2  φ  ∴ cos 2θ + sin^2  φ = 0
$$\mathrm{cos}\:\mathrm{2}\theta\:=\:\frac{\mathrm{1}\:−\:\mathrm{tan}^{\mathrm{2}} \:\theta}{\mathrm{1}\:+\:\mathrm{tan}^{\mathrm{2}} \:\theta}\:=\:\frac{−\mathrm{2}\:\mathrm{tan}^{\mathrm{2}} \:\phi}{\mathrm{2}\:\mathrm{sec}^{\mathrm{2}} \:\phi}\:=\:−\mathrm{sin}^{\mathrm{2}} \:\phi \\ $$$$\therefore\:\mathrm{cos}\:\mathrm{2}\theta\:+\:\mathrm{sin}^{\mathrm{2}} \:\phi\:=\:\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *