Menu Close

If-tan-equals-the-integral-solution-of-the-inequality-4x-2-16x-15-lt-0-and-cos-equals-to-the-slope-of-the-bisector-of-the-first-quadrant-then-sin-sin-is-equal-to-




Question Number 12169 by indreshpatelindresh@435gmail.i last updated on 15/Apr/17
If  tan α equals the integral solution of  the inequality  4x^2 −16x+15<0 and   cos β  equals to the slope of the bisector  of the first quadrant, then   sin (α+β) sin (α−β) is equal to
Iftanαequalstheintegralsolutionoftheinequality4x216x+15<0andcosβequalstotheslopeofthebisectorofthefirstquadrant,thensin(α+β)sin(αβ)isequalto
Answered by mrW1 last updated on 15/Apr/17
4x^2 −16x+15=4(x^2 −4x+4)−1  =4(x−2)^2 −1=(2x−3)(2x−5)=0  x_1 =(3/2)=1.5  x_2 =(5/2)=2.5  ⇒tan α=2    cos β=tan 45°=1  ⇒sin β=0    sin (α+β)sin (α−β)  =(sin αcos β+cos αsin β)(sin αcos β−cos αsin β)  =(sin α)(sin α)  =sin^2  α=((tan^2  α)/(1+tan^2  α))=(2^2 /(1+2^2 ))=(4/5)
4x216x+15=4(x24x+4)1=4(x2)21=(2x3)(2x5)=0x1=32=1.5x2=52=2.5tanα=2cosβ=tan45°=1sinβ=0sin(α+β)sin(αβ)=(sinαcosβ+cosαsinβ)(sinαcosβcosαsinβ)=(sinα)(sinα)=sin2α=tan2α1+tan2α=221+22=45

Leave a Reply

Your email address will not be published. Required fields are marked *