Menu Close

If-th-roots-of-the-equation-x-2-2ax-b-0-are-real-and-disinct-and-they-differ-by-at-most-2m-then-b-lies-in-the-interval-




Question Number 21519 by ram1234 last updated on 26/Sep/17
If th roots of the equation x^2 +2ax+b=0  are real and disinct and they differ by  at most 2m, then  b lies in the interval
Ifthrootsoftheequationx2+2ax+b=0arerealanddisinctandtheydifferbyatmost2m,thenbliesintheinterval
Answered by mrW1 last updated on 26/Sep/17
x^2 +2ax+b=0  x^2 +2ax+a^2 −(a^2 −b)=0  (x+a)^2 −((√(a^2 −b)))^2 =0  (x+a+(√(a^2 −b)))(x+a−(√(a^2 −b)))=0  x_1 =−a+(√(a^2 −b))  x_2 =−a−(√(a^2 −b))  x_1 ≠x_2   ⇒b≠a^2   x_1 −x_2 =2(√(a^2 −b))≤2m  ⇒(√(a^2 −b))≤m  ⇒−m^2 ≤a^2 −b≤m^2   ⇒a^2 −m^2 ≤b≤a^2 +m^2  ∪ b≠a^2
x2+2ax+b=0x2+2ax+a2(a2b)=0(x+a)2(a2b)2=0(x+a+a2b)(x+aa2b)=0x1=a+a2bx2=aa2bx1x2ba2x1x2=2a2b2ma2bmm2a2bm2a2m2ba2+m2ba2
Commented by Joel577 last updated on 26/Sep/17
What′s the idea so u manipulated  the equation with adding a^2  − a^2  (line 2) ?
Whatstheideasoumanipulatedtheequationwithaddinga2a2(line2)?
Commented by mrW1 last updated on 26/Sep/17
I just wanted to get the form  (x−p)(x−q)=0  Certainly one can directly apply the  known formula:  x_(1,2)  =((−2a±(√((2a)^2 −4b)))/2)=−a±(√(a^2 −b))
Ijustwantedtogettheform(xp)(xq)=0Certainlyonecandirectlyapplytheknownformula:x1,2=2a±(2a)24b2=a±a2b

Leave a Reply

Your email address will not be published. Required fields are marked *