Menu Close

If-the-equation-ax-2-2bx-3c-0-has-no-real-roots-and-3c-4-lt-a-b-then-




Question Number 32382 by hizmzm1 last updated on 24/Mar/18
If the equation ax^2 +2bx−3c=0 has  no real roots and (((3c)/4))< a+b, then
Iftheequationax2+2bx3c=0hasnorealrootsand(3c4)<a+b,then
Commented by MJS last updated on 24/Mar/18
I think that′s not enough information
Ithinkthatsnotenoughinformation
Commented by MJS last updated on 24/Mar/18
x^2 +((2b)/a)x−((3c)/a)=0  exactly one root:  (x−r)^2 =x^2 +((2b)/a)x−((3c)/a)  I. −2r=((2b)/a) ⇒ r^2 =(b^2 /a^2 )  II. r^2 =−((3c)/a)  ⇒ −((3c)/a)=(b^2 /a^2 ) ⇒ c=−(b^2 /(3a))  but now we have 1 root. It  disappears when we add a  real number >0 ⇒  ⇒ c>−(b^2 /(3a))    ((3c)/4)<a+b ⇒ c<(4/3)(a+b)    −(b^2 /(3a))<c<(4/3)(a+b)         [⇒ −(b^2 /(3a))<(4/3)(a+b)       case 1: a<0       −b^2 >4a(a+b)       −4a^2 −4ab−b^2 >0       4a^2 +4ab+b^2 <0       (2a+b)^2 <0 ⇒ no solution       case 2: a>0 leads to       (2a+b)^2 >0       ⇒ a>0]
x2+2bax3ca=0exactlyoneroot:(xr)2=x2+2bax3caI.2r=2bar2=b2a2II.r2=3ca3ca=b2a2c=b23abutnowwehave1root.Itdisappearswhenweaddarealnumber>0c>b23a3c4<a+bc<43(a+b)b23a<c<43(a+b)[b23a<43(a+b)case1:a<0b2>4a(a+b)4a24abb2>04a2+4ab+b2<0(2a+b)2<0nosolutioncase2:a>0leadsto(2a+b)2>0a>0]
Answered by Joel578 last updated on 24/Mar/18
no real roots → D < 0  (2b)^2  − 4a(−3c) < 0               4b^2  + 12ac < 0                                  b^2  > 3ac       3c < 4(a + b)  3ac < 4a^2  + 4ab  3ac < b^2
norealrootsD<0(2b)24a(3c)<04b2+12ac<0b2>3ac3c<4(a+b)3ac<4a2+4ab3ac<b2
Commented by MJS last updated on 24/Mar/18
3c<4(a+b) ⇒ 3ac<4a^2 +4ab with a>0  3c>4(a+b) ⇒ 3ac>4a^2 +4ab with a<0  can you show a>0?
3c<4(a+b)3ac<4a2+4abwitha>03c>4(a+b)3ac>4a2+4abwitha<0canyoushowa>0?
Answered by saru53424@gmail.com last updated on 24/Mar/18
  thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *