Menu Close

If-the-equation-x-2-cx-d-0-has-roots-equal-to-the-fourth-powers-of-the-roots-of-x-2-ax-b-0-where-a-2-gt-4b-then-the-roots-of-x-2-4bx-2b-2-c-0-will-be-




Question Number 98058 by PengagumRahasiamu last updated on 11/Jun/20
If the equation x^2 −cx+d=0 has roots  equal to the fourth powers of the roots  of x^2 +ax+b=0, where a^2 >4b then the  roots of x^2 −4bx+2b^2 −c=0 will be
Iftheequationx2cx+d=0hasrootsequaltothefourthpowersoftherootsofx2+ax+b=0,wherea2>4bthentherootsofx24bx+2b2c=0willbe
Answered by Rio Michael last updated on 11/Jun/20
Both real(one is positive and the other negative)  see how:  let x^2  + ax + b = 0 have roots α and β  then the roots of x^2 −cx +d = 0 are  α^4  and β^4   α + β = −a and αβ = b  also α^4  + β^4  = c and α^4 β^4  = d  ⇒ b^4  = d and α^4  + β^4  = c  (α^2  +β^2 )^2 −2(αβ)^2  = c   [(α + β)^2 −2αβ]−2(αβ)^2  = c    (a^2 −2b^2 )−2b^2  = c  ⇒ 2b^2  + c = (a^2 −2b)^2   2b^2 −c = 4a^2 b−a^2                 = a^2 (4b−a^2 )  now for x^2 −4bx + 2b^2 −c = 0   discriminantD = (4b)^2 −4(1)(2b^2 −c)    = 16b^2 −8b^2  + 4c     = 8b^2  + 4c     = 4(2b^2  + c)     = 4(a^2 −2b)^2  >0 ⇒ real roots  f(0) = 2b^2 −c = a^2 (4b−a^2 ) < 0 ⇒ roots have opposite sign
Bothreal(oneispositiveandtheothernegative)seehow:letx2+ax+b=0haverootsαandβthentherootsofx2cx+d=0areα4andβ4α+β=aandαβ=balsoα4+β4=candα4β4=db4=dandα4+β4=c(α2+β2)22(αβ)2=c[(α+β)22αβ]2(αβ)2=c(a22b2)2b2=c2b2+c=(a22b)22b2c=4a2ba2=a2(4ba2)nowforx24bx+2b2c=0discriminantD=(4b)24(1)(2b2c)=16b28b2+4c=8b2+4c=4(2b2+c)=4(a22b)2>0realrootsf(0)=2b2c=a2(4ba2)<0rootshaveoppositesign

Leave a Reply

Your email address will not be published. Required fields are marked *