Menu Close

If-the-equations-x-2-ax-b-0-and-x-2-bx-a-0-have-a-common-root-then-the-numerical-value-of-a-b-is-




Question Number 87272 by unknown last updated on 03/Apr/20
If  the equations x^2 +ax+b=0 and   x^2 +bx+a=0 have a common root,  then the numerical value of a+b is
Iftheequationsx2+ax+b=0andx2+bx+a=0haveacommonroot,thenthenumericalvalueofa+bis
Answered by $@ty@m123 last updated on 03/Apr/20
Subtract the two equatios.  (ax+b)−(bx+a)=0  ⇒(a−b)x−(a−b)=0  ⇒x=1 is the common root.  Put x=1 in first(or second) equation.  ⇒a+b=−1.
Subtractthetwoequatios.(ax+b)(bx+a)=0(ab)x(ab)=0x=1isthecommonroot.Putx=1infirst(orsecond)equation.a+b=1.
Commented by mr W last updated on 03/Apr/20
you meant a+b=−1 sir.
youmeanta+b=1sir.
Commented by $@ty@m123 last updated on 03/Apr/20
Thanks for correction.
Thanksforcorrection.

Leave a Reply

Your email address will not be published. Required fields are marked *