Menu Close

If-the-non-zero-numbers-x-y-z-are-in-AP-and-tan-1-x-tan-1-y-tan-1-z-are-also-in-AP-then-




Question Number 53924 by F_Nongue last updated on 27/Jan/19
If the non−zero numbers x, y, z are in AP,  and tan^(−1) x, tan^(−1) y, tan^(−1) z are also in AP,  then
Ifthenonzeronumbersx,y,zareinAP,andtan1x,tan1y,tan1zarealsoinAP,then
Answered by $@ty@m last updated on 27/Jan/19
tan^(−1) y−tan^(−1) x=tan^(−1) z−tan^(−1) y  ⇒tan^(−1) ((y−x)/(1+yx))=tan^(−1) ((z−y)/(1+zy))  ⇒((y−x)/(1+yx))=((z−y)/(1+zy))⇒  ⇒1+yx=1+zy (∵x, y, z are in AP)  ⇒x=z  ⇒y=z  ⇒x=y=z
tan1ytan1x=tan1ztan1ytan1yx1+yx=tan1zy1+zyyx1+yx=zy1+zy1+yx=1+zy(x,y,zareinAP)x=zy=zx=y=z
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Jan/19
given 2y=x+z  2tan^(−1) y=tan^(−1) x+tan^(−1) z  tan^(−1) (((2y)/(1−y^2 )))=tan^(−1) (((x+z)/(1−xz)))  ((2y)/(1−y^2 ))=((x+z)/(1−xz))  2y−2xyz=x+z−xy^2 −zy^2   xy^2 +zy^2 −2xyz=0  xy+zy−2xz=0  (1/z)+(1/x)=(2/y)  x,y and z in H.P also...  Peculiar conclusion...  pls clearly mention in question what to prove...
given2y=x+z2tan1y=tan1x+tan1ztan1(2y1y2)=tan1(x+z1xz)2y1y2=x+z1xz2y2xyz=x+zxy2zy2xy2+zy22xyz=0xy+zy2xz=01z+1x=2yx,yandzinH.PalsoPeculiarconclusionplsclearlymentioninquestionwhattoprove

Leave a Reply

Your email address will not be published. Required fields are marked *