Menu Close

If-the-roots-of-the-quadratic-equation-x-2-3x-304-0-are-and-then-the-quadratic-equation-with-roots-3-and-3-is-




Question Number 25172 by yuvasuprith07@gmail.com last updated on 05/Dec/17
If the roots of the quadratic  equation   x^2 −3x−304=0 are α and β, then the  quadratic equation with roots 3α and  3β is
$$\mathrm{If}\:\mathrm{the}\:\mathrm{roots}\:\mathrm{of}\:\mathrm{the}\:\mathrm{quadratic}\:\:\mathrm{equation}\: \\ $$$${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{304}=\mathrm{0}\:\mathrm{are}\:\alpha\:\mathrm{and}\:\beta,\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{quadratic}\:\mathrm{equation}\:\mathrm{with}\:\mathrm{roots}\:\mathrm{3}\alpha\:\mathrm{and} \\ $$$$\mathrm{3}\beta\:\mathrm{is} \\ $$
Answered by ajfour last updated on 05/Dec/17
((x/3))^2 −3((x/3))−304=0  ⇒  x^2 −9x−2736=0
$$\left(\frac{{x}}{\mathrm{3}}\right)^{\mathrm{2}} −\mathrm{3}\left(\frac{{x}}{\mathrm{3}}\right)−\mathrm{304}=\mathrm{0} \\ $$$$\Rightarrow\:\:{x}^{\mathrm{2}} −\mathrm{9}{x}−\mathrm{2736}=\mathrm{0}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *