Menu Close

If-the-sum-of-an-infinite-GP-be-3-and-the-sum-of-the-squares-of-its-term-is-also-3-then-its-first-term-and-common-ratio-are-




Question Number 43629 by peter frank last updated on 12/Sep/18
If  the sum of an infinite GP be 3 and the  sum of the squares of its term is also 3,  then its first term and common ratio are
$$\mathrm{If}\:\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{an}\:\mathrm{infinite}\:\mathrm{GP}\:\mathrm{be}\:\mathrm{3}\:\mathrm{and}\:\mathrm{the} \\ $$$$\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{squares}\:\mathrm{of}\:\mathrm{its}\:\mathrm{term}\:\mathrm{is}\:\mathrm{also}\:\mathrm{3}, \\ $$$$\mathrm{then}\:\mathrm{its}\:\mathrm{first}\:\mathrm{term}\:\mathrm{and}\:\mathrm{common}\:\mathrm{ratio}\:\mathrm{are} \\ $$
Answered by $@ty@m last updated on 13/Sep/18
ATQ,  a+ar+ar^2 +.....=3  ⇒(a/(1−r))=3 ...(1)  Again,  (a)^2 +(ar)^2 +(ar^2 )^2 +(ar^3 )^2 +......=3  ⇒a^2 (1+r^2 +r^4 +r^6 +....)=3  ⇒a^2 ×(1/(1−r^2 ))=3 ...(2)  from (1) &(2),  (a/(1−r))=(a^2 /(1−r^2 ))  ⇒a=1+r ...(3)  from (1) &(3)  ((1+r)/(1−r))=3  ⇒r=(1/2) Ans.  and from (3)  a=(3/2) Ans.
$${ATQ}, \\ $$$${a}+{ar}+{ar}^{\mathrm{2}} +…..=\mathrm{3} \\ $$$$\Rightarrow\frac{{a}}{\mathrm{1}−{r}}=\mathrm{3}\:…\left(\mathrm{1}\right) \\ $$$${Again}, \\ $$$$\left({a}\right)^{\mathrm{2}} +\left({ar}\right)^{\mathrm{2}} +\left({ar}^{\mathrm{2}} \right)^{\mathrm{2}} +\left({ar}^{\mathrm{3}} \right)^{\mathrm{2}} +……=\mathrm{3} \\ $$$$\Rightarrow{a}^{\mathrm{2}} \left(\mathrm{1}+{r}^{\mathrm{2}} +{r}^{\mathrm{4}} +{r}^{\mathrm{6}} +….\right)=\mathrm{3} \\ $$$$\Rightarrow{a}^{\mathrm{2}} ×\frac{\mathrm{1}}{\mathrm{1}−{r}^{\mathrm{2}} }=\mathrm{3}\:…\left(\mathrm{2}\right) \\ $$$${from}\:\left(\mathrm{1}\right)\:\&\left(\mathrm{2}\right), \\ $$$$\frac{{a}}{\mathrm{1}−{r}}=\frac{{a}^{\mathrm{2}} }{\mathrm{1}−{r}^{\mathrm{2}} } \\ $$$$\Rightarrow{a}=\mathrm{1}+{r}\:…\left(\mathrm{3}\right) \\ $$$${from}\:\left(\mathrm{1}\right)\:\&\left(\mathrm{3}\right) \\ $$$$\frac{\mathrm{1}+{r}}{\mathrm{1}−{r}}=\mathrm{3} \\ $$$$\Rightarrow{r}=\frac{\mathrm{1}}{\mathrm{2}}\:{Ans}. \\ $$$${and}\:{from}\:\left(\mathrm{3}\right) \\ $$$${a}=\frac{\mathrm{3}}{\mathrm{2}}\:{Ans}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *