Question Number 43603 by peter frank last updated on 12/Sep/18
$$\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{first}\:\mathrm{two}\:\mathrm{terms}\:\mathrm{of}\:\mathrm{an}\:\mathrm{infinite} \\ $$$$\mathrm{GP}\:\mathrm{is}\:\mathrm{1}\:\mathrm{and}\:\mathrm{every}\:\mathrm{term}\:\mathrm{is}\:\mathrm{twice}\:\mathrm{the}\:\mathrm{sum} \\ $$$$\mathrm{of}\:\mathrm{all}\:\mathrm{the}\:\mathrm{successive}\:\mathrm{terms},\:\mathrm{then}\:\mathrm{its} \\ $$$$\mathrm{first}\:\mathrm{term}\:\mathrm{is} \\ $$
Answered by $@ty@m last updated on 12/Sep/18
$${a}+{ar}=\mathrm{1} \\ $$$$\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{1}+{r}}\:..\left(\mathrm{1}\right) \\ $$$${a}=\mathrm{2}\left({ar}+{ar}^{\mathrm{2}} +{ar}^{\mathrm{3}} +…..\right) \\ $$$$\Rightarrow{a}=\frac{\mathrm{2}{ar}}{\mathrm{1}−{r}} \\ $$$$\Rightarrow\mathrm{1}−{r}=\mathrm{2}{r} \\ $$$$\Rightarrow{r}=\frac{\mathrm{1}}{\mathrm{3}}\:..\left(\mathrm{2}\right) \\ $$$$\therefore{a}=\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}}}\:\:\:,\:{from}\left(\mathrm{1}\right) \\ $$$$\Rightarrow{a}\:=\frac{\mathrm{3}}{\mathrm{4}}\:{Ans}. \\ $$