Menu Close

If-the-sum-of-the-coefficients-in-the-expansion-of-1-2x-n-is-6561-then-the-greatest-coefficient-in-the-expansion-is-




Question Number 44315 by Tip Top last updated on 26/Sep/18
If the sum of the coefficients in the  expansion of (1+2x)^n  is 6561, then the  greatest coefficient in the expansion is
$$\mathrm{If}\:\mathrm{the}\:\mathrm{sum}\:\mathrm{of}\:\mathrm{the}\:\mathrm{coefficients}\:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+\mathrm{2}{x}\right)^{{n}} \:\mathrm{is}\:\mathrm{6561},\:\mathrm{then}\:\mathrm{the} \\ $$$$\mathrm{greatest}\:\mathrm{coefficient}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{is} \\ $$
Answered by MrW3 last updated on 27/Sep/18
sum of all coef.=(1+2×1)^n =3^n   sum of all coef.=6561  ⇒3^n =6561=3^8   ⇒n=8  greates. coef.=C_5 ^8 ×2^5 =1792
$${sum}\:{of}\:{all}\:{coef}.=\left(\mathrm{1}+\mathrm{2}×\mathrm{1}\right)^{{n}} =\mathrm{3}^{{n}} \\ $$$${sum}\:{of}\:{all}\:{coef}.=\mathrm{6561} \\ $$$$\Rightarrow\mathrm{3}^{{n}} =\mathrm{6561}=\mathrm{3}^{\mathrm{8}} \\ $$$$\Rightarrow{n}=\mathrm{8} \\ $$$${greates}.\:{coef}.={C}_{\mathrm{5}} ^{\mathrm{8}} ×\mathrm{2}^{\mathrm{5}} =\mathrm{1792} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *