Menu Close

If-the-third-term-in-the-expansion-of-1-x-x-log-10-x-5-is-1000-then-the-value-of-x-is-




Question Number 55786 by gunawan last updated on 04/Mar/19
If the third term in the expansion of   ((1/x) + x^(log_(10) x) )^5  is 1000, then the value of  x is
Ifthethirdtermintheexpansionof(1x+xlog10x)5is1000,thenthevalueofxis
Answered by tanmay.chaudhury50@gmail.com last updated on 04/Mar/19
5c_2 (x)^3 (x^(log_(10) x) )^2 =10^3   x^(3+2log_(10) x) =((1000)/(5!))×2!×3!  x^(3+log_(10) x^2 ) =((1000×2×3×2)/(5×4×3×2))=10^2   (10^n )^(3+log_(10) 10^(2n) ) =10^2   (10^n )^(3+2n) =10^2   3n+2n^2 =2  2n^2 +3n−2=0  2n^2 +4n−n−2=0  2n(n+2)−1(n+2)=0  (n+2)(2n−1)=0  n=−2 and n=(1/2)  so x=10^(−2) =(1/(100))  or x=10^(1/2) =(√(10))
5c2(x)3(xlog10x)2=103x3+2log10x=10005!×2!×3!x3+log10x2=1000×2×3×25×4×3×2=102(10n)3+log10102n=102(10n)3+2n=1023n+2n2=22n2+3n2=02n2+4nn2=02n(n+2)1(n+2)=0(n+2)(2n1)=0n=2andn=12sox=102=1100orx=1012=10

Leave a Reply

Your email address will not be published. Required fields are marked *