Menu Close

If-u-10-0-pi-2-x-10-sin-x-dx-then-the-value-of-u-10-90-u-8-is-




Question Number 41579 by Dawajan Nikmal last updated on 09/Aug/18
If  u_(10) = ∫_( 0) ^(π/2) x^(10)  sin x dx, then the value of  u_(10) +90 u_8   is
Ifu10=π/20x10sinxdx,thenthevalueofu10+90u8is
Commented by maxmathsup by imad last updated on 11/Aug/18
let u_n = ∫_0 ^(π/2)   x^n sinx dx let find u_n  by recurrence  by parts we have  u_n  =[(1/(n+1)) x^(n+1)  sinx]_0 ^(π/2)  −∫_0 ^(π/2)  (1/(n+1))x^(n+1)  cosx dx  =(π^(n+1) /((n+1)2^(n+1) )) −(1/(n+1))  ∫_0 ^(π/2)   x^(n+1)  cosx dx  =(π^(n+1) /((n+1)2^(n+1) )) −(1/((n+1))){  [(1/(n+2))x^(n+2)  cosx]_0 ^(π/2)  +∫_0 ^(π/2)  (1/((n+2))) x^(n+2)  sinxdx}  =(π^(n+1) /((n+1)2^(n+1) )) −(1/((n+1)(n+2))) u_(n+2)   ⇒  u_8 =(π^9 /(9 .2^9 )) −(1/(9.10)) u_(10)   ⇒ u_(10)  +90 u_8  = u_(10)   +90 (π^9 /(9.2^9 )) −u_(10)  ⇒  u_(10)  +90 u_8 = ((10×π^9 )/2^9 ) =10((π/2))^9  .
letun=0π2xnsinxdxletfindunbyrecurrencebypartswehaveun=[1n+1xn+1sinx]0π20π21n+1xn+1cosxdx=πn+1(n+1)2n+11n+10π2xn+1cosxdx=πn+1(n+1)2n+11(n+1){[1n+2xn+2cosx]0π2+0π21(n+2)xn+2sinxdx}=πn+1(n+1)2n+11(n+1)(n+2)un+2u8=π99.2919.10u10u10+90u8=u10+90π99.29u10u10+90u8=10×π929=10(π2)9.
Answered by tanmay.chaudhury50@gmail.com last updated on 09/Aug/18
∫x^(10) sinxdx  =x^(10) .(−cosx)−∫10x^9 .(−cosx)dx  =−x^(10) cosx+10∫x^9 cosxdx  =−x^(10) cosx+10[(x^9 sinx−9∫x^8 sinxdx]  =−x^(10) cosx+10x^9 sinx−90∫x^8 sinxdx  so ∫_0 ^(Π/2) x^(10) sinxdx  =∣−x^(10) cosx+10x^9 sinx∣_0 ^(Π/2)  +(−90)∫_0 ^(Π/2) x^8 sinx  u_(10) +90u_8 ={−((Π/2))^(10) cos(Π/2)+10.((Π/2))^9 sin(Π/2)}  u_(10) +90u_8 =10.((Π/2))^9
x10sinxdx=x10.(cosx)10x9.(cosx)dx=x10cosx+10x9cosxdx=x10cosx+10[(x9sinx9x8sinxdx]=x10cosx+10x9sinx90x8sinxdxso0Π2x10sinxdx=∣x10cosx+10x9sinx0Π2+(90)0Π2x8sinxu10+90u8={(Π2)10cosΠ2+10.(Π2)9sinΠ2}u10+90u8=10.(Π2)9

Leave a Reply

Your email address will not be published. Required fields are marked *