Menu Close

If-X-3-4-1-1-the-value-of-X-n-is-




Question Number 41141 by Kishan Daroga last updated on 02/Aug/18
If X= [(3,(−4)),(1,(−1)) ], the value of X^n is
IfX=[3411],thevalueofXnis
Commented by math khazana by abdo last updated on 04/Aug/18
let A =  (((3       −4)),((1         −1)) )  the caracteristic polynome of  A is p(x)=det(A−xI) = determinant (((3−x       −4)),((1           −1−x)))  =(x−3)(x+1) +4 =x^2  +x−3x−3 +4  =x^2 −2x +1 =(x−1)^2  so 1 is double proper  value for A  v(1)=ker(A−I)={u /(A−I)u=0}  let u ((x),(y) ) ⇒ (((2        −4)),((1          −2)) )  ((x),(y) ) =0 ⇒  {_(x−2y=0) ^(2x−4y=0)  ⇒x=2y ⇒(x,y)=(2y,y)=y(2,1)  so v(1)=D_e    with vector e(2,1) its clear that  A is not diagonalisable  by cayley hamilton  theorem give A^2  −2A +I =0⇒  A^2  =2A −I ⇒ A^3  =(2A−I)A=2A^2 −A  =2(2A−I)−A =3A −2I  for that we must  determine the sequences u_n  and v_n  with  verify  A^n   =u_n  A +v_n I ⇒  A^(n+1)  =u_(n+1) A +v_(n+1) I  =(u_n A +v_n I)A  =u_n A^2  +v_n A =u_n (2A−I) +v_n A  =(2u_n +v_n )A −u_n I ⇒   u_(n+1) = 2u_n  +v_n    and v_(n+1) =−u_n     ...be continued...
letA=(3411)thecaracteristicpolynomeofAisp(x)=det(AxI)=|3x411x|=(x3)(x+1)+4=x2+x3x3+4=x22x+1=(x1)2so1isdoublepropervalueforAv(1)=ker(AI)={u/(AI)u=0}letu(xy)(2412)(xy)=0{x2y=02x4y=0x=2y(x,y)=(2y,y)=y(2,1)sov(1)=Dewithvectore(2,1)itsclearthatAisnotdiagonalisablebycayleyhamiltontheoremgiveA22A+I=0A2=2AIA3=(2AI)A=2A2A=2(2AI)A=3A2IforthatwemustdeterminethesequencesunandvnwithverifyAn=unA+vnIAn+1=un+1A+vn+1I=(unA+vnI)A=unA2+vnA=un(2AI)+vnA=(2un+vn)AunIun+1=2un+vnandvn+1=unbecontinued

Leave a Reply

Your email address will not be published. Required fields are marked *