Menu Close

If-x-3-is-the-common-factor-of-the-expressions-ax-2-bx-1-and-px-2-qx-3-then-9a-3p-3b-q-




Question Number 37462 by bholachaudhary211@gamil.com last updated on 13/Jun/18
If x+3 is the common factor of the  expressions ax^2 +bx+1 and   px^2 +qx−3, then ((−(9a+3p))/(3b+q)) = ____.
$$\mathrm{If}\:{x}+\mathrm{3}\:\mathrm{is}\:\mathrm{the}\:\mathrm{common}\:\mathrm{factor}\:\mathrm{of}\:\mathrm{the} \\ $$$$\mathrm{expressions}\:{ax}^{\mathrm{2}} +{bx}+\mathrm{1}\:\mathrm{and}\: \\ $$$${px}^{\mathrm{2}} +{qx}−\mathrm{3},\:\mathrm{then}\:\frac{−\left(\mathrm{9}{a}+\mathrm{3}{p}\right)}{\mathrm{3}{b}+{q}}\:=\:\_\_\_\_. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Jun/18
a(−3)^2 +b(−3)+1=0  9a−3b+1=0  9p−3q−3=0   3p=q+1  ((−(3b−1+q+1))/(3b+q))  =−1
$${a}\left(−\mathrm{3}\right)^{\mathrm{2}} +{b}\left(−\mathrm{3}\right)+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{9}{a}−\mathrm{3}{b}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{9}{p}−\mathrm{3}{q}−\mathrm{3}=\mathrm{0}\:\:\:\mathrm{3}{p}={q}+\mathrm{1} \\ $$$$\frac{−\left(\mathrm{3}{b}−\mathrm{1}+{q}+\mathrm{1}\right)}{\mathrm{3}{b}+{q}} \\ $$$$=−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *