Menu Close

If-x-lt-1-then-the-coefficient-of-x-n-in-the-expansion-of-1-x-x-2-x-3-x-4-2-is-




Question Number 26712 by julli deswal last updated on 28/Dec/17
If  ∣x∣ < 1, then the coefficient of x^n  in the  expansion of (1+x+x^2 +x^3 +x^4 +...)^2  is
$$\mathrm{If}\:\:\mid{x}\mid\:<\:\mathrm{1},\:\mathrm{then}\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{n}} \:\mathrm{in}\:\mathrm{the} \\ $$$$\mathrm{expansion}\:\mathrm{of}\:\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +…\right)^{\mathrm{2}} \:\mathrm{is} \\ $$
Answered by mrW1 last updated on 28/Dec/17
(1+x+x^2 +x^3 +x^4 +...)^2  =Σ_(n=0) ^∞ (n+1)x^n
$$\left(\mathrm{1}+{x}+{x}^{\mathrm{2}} +{x}^{\mathrm{3}} +{x}^{\mathrm{4}} +…\right)^{\mathrm{2}} \:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left({n}+\mathrm{1}\right){x}^{{n}} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *