Menu Close

If-x-m-occurs-in-the-expansion-of-x-1-x-2-2n-the-coefficient-of-x-m-is-




Question Number 33147 by Ahmad Hajjaj last updated on 11/Apr/18
If   x^m   occurs in the expansion of  (x + (1/x^2 ))^(2n) , the coefficient of x^m  is
Ifxmoccursintheexpansionof(x+1x2)2n,thecoefficientofxmis
Commented by prof Abdo imad last updated on 12/Apr/18
we have  (x +(1/x^2 ))^(2n)  = Σ_(k=0) ^(2n)    C_(2n) ^k x^k   (x^(−2) )^(2n−k)   = Σ_(k=0) ^(2n)  C_(2n) ^k   x^(k −4n +2k)   = Σ_k  C_(2n) ^k   x^(3k −4n)  so if x^m   appears in the expansion  we get 3k −4n =m⇒  3k = m +4n ⇒ k =[((m+4n)/3)] and the coefficient  is  C_(2n) ^([((m+4n)/3)]) .
wehave(x+1x2)2n=k=02nC2nkxk(x2)2nk=k=02nC2nkxk4n+2k=kC2nkx3k4nsoifxmappearsintheexpansionweget3k4n=m3k=m+4nk=[m+4n3]andthecoefficientisC2n[m+4n3].
Answered by Rio Mike last updated on 11/Apr/18
Σ_(r=1) ^(2n) ^(2n) C_r .x^(2n−r) ((1/x^2 ))^r    ^(2n) C_(r .) x^(2n−r) .1^r .x^(−2r)    ^(2n) C_(r. ) x^(2n−3n)   hence , x^m = x^(2(m)−3(m))                   m= 2m −3m                m=−m
2nr=12nCr.x2nr(1x2)r2nCr.x2nr.1r.x2r2nCr.x2n3nhence,xm=x2(m)3(m)m=2m3mm=m
Answered by MWSuSon last updated on 25/Apr/20
=C_r ^(2n) (x^(−2) )^r x^(2n−r)   =C_r ^(2n) x^(−2r) x^(2n−r)   −2r+2n−r=m  2n−m=3r  ((2n−m)/3)=r  replacing r with ((2n−m)/3)  we have (((2n)!)/((((2n−m)/3))!(((6n−2n+m)/3))!))  (((2n)!)/((((2n−m)/3))!(((4n+m)/3))!))
=Cr2n(x2)rx2nr=Cr2nx2rx2nr2r+2nr=m2nm=3r2nm3=rreplacingrwith2nm3wehave(2n)!(2nm3)!(6n2n+m3)!(2n)!(2nm3)!(4n+m3)!

Leave a Reply

Your email address will not be published. Required fields are marked *