Menu Close

If-x-m-occurs-in-the-expansion-of-x-1-x-2-2n-the-coefficient-of-x-m-is-




Question Number 33147 by Ahmad Hajjaj last updated on 11/Apr/18
If   x^m   occurs in the expansion of  (x + (1/x^2 ))^(2n) , the coefficient of x^m  is
$$\mathrm{If}\:\:\:{x}^{{m}} \:\:\mathrm{occurs}\:\mathrm{in}\:\mathrm{the}\:\mathrm{expansion}\:\mathrm{of} \\ $$$$\left({x}\:+\:\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}{n}} ,\:\mathrm{the}\:\mathrm{coefficient}\:\mathrm{of}\:{x}^{{m}} \:\mathrm{is} \\ $$
Commented by prof Abdo imad last updated on 12/Apr/18
we have  (x +(1/x^2 ))^(2n)  = Σ_(k=0) ^(2n)    C_(2n) ^k x^k   (x^(−2) )^(2n−k)   = Σ_(k=0) ^(2n)  C_(2n) ^k   x^(k −4n +2k)   = Σ_k  C_(2n) ^k   x^(3k −4n)  so if x^m   appears in the expansion  we get 3k −4n =m⇒  3k = m +4n ⇒ k =[((m+4n)/3)] and the coefficient  is  C_(2n) ^([((m+4n)/3)]) .
$${we}\:{have}\:\:\left({x}\:+\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{\mathrm{2}{n}} \:=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:\:\:{C}_{\mathrm{2}{n}} ^{{k}} {x}^{{k}} \:\:\left({x}^{−\mathrm{2}} \right)^{\mathrm{2}{n}−{k}} \\ $$$$=\:\sum_{{k}=\mathrm{0}} ^{\mathrm{2}{n}} \:{C}_{\mathrm{2}{n}} ^{{k}} \:\:{x}^{{k}\:−\mathrm{4}{n}\:+\mathrm{2}{k}} \:\:=\:\sum_{{k}} \:{C}_{\mathrm{2}{n}} ^{{k}} \:\:{x}^{\mathrm{3}{k}\:−\mathrm{4}{n}} \:{so}\:{if}\:{x}^{{m}} \\ $$$${appears}\:{in}\:{the}\:{expansion}\:\:{we}\:{get}\:\mathrm{3}{k}\:−\mathrm{4}{n}\:={m}\Rightarrow \\ $$$$\mathrm{3}{k}\:=\:{m}\:+\mathrm{4}{n}\:\Rightarrow\:{k}\:=\left[\frac{{m}+\mathrm{4}{n}}{\mathrm{3}}\right]\:{and}\:{the}\:{coefficient} \\ $$$${is}\:\:{C}_{\mathrm{2}{n}} ^{\left[\frac{{m}+\mathrm{4}{n}}{\mathrm{3}}\right]} . \\ $$
Answered by Rio Mike last updated on 11/Apr/18
Σ_(r=1) ^(2n) ^(2n) C_r .x^(2n−r) ((1/x^2 ))^r    ^(2n) C_(r .) x^(2n−r) .1^r .x^(−2r)    ^(2n) C_(r. ) x^(2n−3n)   hence , x^m = x^(2(m)−3(m))                   m= 2m −3m                m=−m
$$\underset{{r}=\mathrm{1}} {\overset{\mathrm{2}{n}} {\sum}}\:^{\mathrm{2}{n}} {C}_{{r}} .{x}^{\mathrm{2}{n}−{r}} \left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }\right)^{{r}} \\ $$$$\:\:^{\mathrm{2}{n}} {C}_{{r}\:.} {x}^{\mathrm{2}{n}−{r}} .\mathrm{1}^{{r}} .{x}^{−\mathrm{2}{r}} \\ $$$$\:\:^{\mathrm{2}{n}} {C}_{{r}.\:} {x}^{\mathrm{2}{n}−\mathrm{3}{n}} \\ $$$${hence}\:,\:{x}^{{m}} =\:{x}^{\mathrm{2}\left({m}\right)−\mathrm{3}\left({m}\right)} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}=\:\mathrm{2}{m}\:−\mathrm{3}{m} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{m}=−{m} \\ $$
Answered by MWSuSon last updated on 25/Apr/20
=C_r ^(2n) (x^(−2) )^r x^(2n−r)   =C_r ^(2n) x^(−2r) x^(2n−r)   −2r+2n−r=m  2n−m=3r  ((2n−m)/3)=r  replacing r with ((2n−m)/3)  we have (((2n)!)/((((2n−m)/3))!(((6n−2n+m)/3))!))  (((2n)!)/((((2n−m)/3))!(((4n+m)/3))!))
$$={C}_{{r}} ^{\mathrm{2}{n}} \left({x}^{−\mathrm{2}} \right)^{{r}} {x}^{\mathrm{2}{n}−{r}} \\ $$$$={C}_{{r}} ^{\mathrm{2}{n}} {x}^{−\mathrm{2}{r}} {x}^{\mathrm{2}{n}−{r}} \\ $$$$−\mathrm{2}{r}+\mathrm{2}{n}−{r}={m} \\ $$$$\mathrm{2}{n}−{m}=\mathrm{3}{r} \\ $$$$\frac{\mathrm{2}{n}−{m}}{\mathrm{3}}={r} \\ $$$${replacing}\:{r}\:{with}\:\frac{\mathrm{2}{n}−{m}}{\mathrm{3}} \\ $$$${we}\:{have}\:\frac{\left(\mathrm{2}{n}\right)!}{\left(\frac{\mathrm{2}{n}−{m}}{\mathrm{3}}\right)!\left(\frac{\mathrm{6}{n}−\mathrm{2}{n}+{m}}{\mathrm{3}}\right)!} \\ $$$$\frac{\left(\mathrm{2}{n}\right)!}{\left(\frac{\mathrm{2}{n}−{m}}{\mathrm{3}}\right)!\left(\frac{\mathrm{4}{n}+{m}}{\mathrm{3}}\right)!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *